XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi M, Gholizadeh M H, Rahmani M. Spatiotemporal Trend Analysis of Maximum Soil Temperature Over Iran. Journal of Spatial Analysis Environmental Hazards 2023; 10 (2) :167-186
URL: http://jsaeh.khu.ac.ir/article-1-3323-en.html
1- University of Kurdistan , moradimasood@ymail.com
2- University of Kurdistan
Abstract:   (2159 Views)
Investigation of the Temporal and Spatial Variation of Maximum Soil Temperature in Iran

Extended Abstract
Introduction
The study of soil temperature in different depths of soil is important in climatology, hydrology, agrometeorology and water resource management. Different depths has a different temporal and spatial soil temperature variation. It represents the regional ground temperature regime. Furthermore, due to its rapid response to environmental changes, soil temperature is one of the most important indicators of climate change. The increase in soil temperature because of global warming can promotes disasters such as drought by increasing the water demand of agricultural products during the plant growth period. The increase in soil temperature also have a various consequences, include increasing evaporation from the soil surface, soil salinity in susceptible areas, which can lead to a decrease in soil yield and failure in plant growth. Therefore, knowledge of soil temperature changes in different environments is very important in climate studies. The aim of the current research is to analyze the spatial and temporal variations of soil temperature at different depths from five to 30cm of the ground and to investigate the existence of any kind of increasing or decreasing trend at different climates of Iran.
Methodology
Hourly soil temperature data (depths of 5, 10, 20 and 30 cm) were used in this research for the period of 1998-2017. The soil depth temperature is measured three times a day at 6:30 am, 12:30 pm, and 6:30 pm local time (3, 9, and 3 p.m. UTC). These data have been received for 150 synoptic stations of Iran on a daily basis from the Iran Meteorological Organization (IRIMO). IRIMO monitored the quality of soil temperature for data entry, data recording, and data reformatting errors. Data availability, discrepancies, errors, and outliers were identified during the second stage.
At the first step, temporal coefficient of variation were calculated for available soil temperature time series from five to 30 cm depths of each station. For this purpose, the average of three daily measurements of soil temperature was calculated and then the temporal coefficient of variation was obtained. In the next step, trend analysis of soil temperature has been investigated using the non-parametric Mann-Kendal test. The trend slope was calculated using Sen’s slope for each station in seasonal time scale. Trend analysis has been done for all three observations of the day.
Results and Discussion
The studied stations show significant spatial patterns in the temporal variability of soil temperature. In all four investigated depths, from five to 30 cm, the northwest parts of Iran, and some parts of Zagros and Alborz mountain ranges have high temporal coefficient of variation. In contrast, the stations located on the southern coasts and southern islands had the lowest temporal variability. In warm and cold seasons (summer and late autumn to mid-winter), the spatial changes of soil temperature at different depths are lower than spring and early autumn. However, in the warm period of the year, the soil temperature experiences lower spatial variations at different depths. Spring and autumn seasons, as the transition period from cold to warm and warm to cold seasons, show the most spatial temperature variations in Iran. Detected trends do not have significant differences among the three observations of the day. Soil temperature Trend analysis at different depths showed positive values for two seasons of summer and winter over most of the stations throughout Iran. Extreme trends are more frequent in the summertime of Zagros and Alborz mountainous regions, while in the winter season the stations located at the southern latitudes of Iran have experienced the most positive trends. In the summer season, higher trends with 99% confidence are more frequent in the mountainous areas. These positive trends in soil temperature have occurred in all studied depths. The negative trend at different depths is a distinct feature of the autumn season, which is significantly more prevalent than other seasons throughout Iran. The analysis of soil temperature trends in different depths shows that values above 1 degree Celsius often occur in 5 to 20 cm deeps. The increasing trend of soil temperature in winter shows a greater spatial expansion, which is indicate increasing annual minimum soil temperatures and the increasing trend of Iran's soil temperature.
Keywords: Soil Temperature, Spatiotemporal Variations, Man-Kendal Test, Sen's Slope, Iran

 
Full-Text [PDF 2675 kb]   (560 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/07/13 | Accepted: 2023/08/7 | Published: 2023/11/14

References
1. ابراهیمی، 1374. مطالعه دمای اعماق مختلف خاک. پایان نامه کارشناسی ارشد هواشناسی، مؤسسه ژئوفیزیک دانشگاه تهران.
2. اسعدی اسکویی، ا.، موسوی بایگی، م.، یزدانی، م.، علیزاده، ا. و زهد قدسی، م. ۱۳۹۶. اثر عمق غرقابی بر دمای آب و خاک در شالیزار (مطالعه موردی: رشت)، نشریه هواشناسی کشاورزی، جلد ۵، شماره ۱، صفحات ۵۶-۴۸.
3. ثنایی نژاد، ح.، عباسی، م.، موسوی بایگی، م. و حیدری گندمان، م. ۱۳۸۷. بررسی رژیم دمایی هوا و اعماق خاک و تعیین توابع نوسانات ادواری آن‌ها در ایستگاه‌های استان کردستان، مجله‌ی علوم و صنایع کشاورزی ویژه آب و خاک، دوره ۲۲، شماره ۱، صفحات ۳۳-۲۵.
4. سبزی‌پرور، ع.، زارع ابیانه، ح. و بیات ورکشی، م. ۱۳۸۹. مقایسه یافته‌های مدل شبکه استنتاج تطبیقی عصبی-فازی با مدلهای رگرسیونی به منظور برآورد دمای خاک در سه اقلیم متفاوت، جلد ۲۴ شماره ۲ صفحات ۲۸۵-۲۷۴.
5. مجرد، ف. و صادقی، ح. ۱۳۹۱. بررسی رابطه‌ی دمای سطح زمین با اعماق خاک (مطالعه‌ی موردی: ایستگاه کرمانشاه)، پژوهش‌های جغرافیای طبیعی، جلد ۴۵، شماره ۱، صفحات ۱۱۸-۱۰۱.
6. مزیدی، ا. و فلاح زاده ، ف. 1390. تحلیل روند دمای سالانه‌ی خاک در ایستگاه یزد، فصلنامه جغرافیا و توسعه, شماره 9(24), صفحات ۵۶-۳۹.
7. میرعباسی نجف آبادی، ر. و دین پژوه ی. ۱۳۸۹. تحلیل روند تغییرات آبدهی رودخانه‌های شمال غرب ایران در سه دهه اخیر، نشریه آب و خاک، دوره 24 ، شماره 4، صفحات ۷۶۸-۷۵۷.
8. نجفی مود، م.، علیزاده، ا.، محمدیان آ. و موسوی ج. 1387. بررسی رابطه دمای هوا و دمای اعماق مختلف خاک و برآورد عمق یخبندان، علوم و صنایع کشاورزی, دوره 22, شماره 2, صفحات 456-466.
9. همتی، ش.، نصیری، ب.، کرمپور، م. 1399. تعیین روند تغییر دمای خاک در اقلیمهای مختلف استان کرمانشاه، تحقیقات آب و خاک ایران، دوره 51 ، شماره10، صفحات 2650-2642.
10. Araghi, A.; M. Mousavi-Baygi, and J. Adamowski. 2017. Detecting soil temperature trends in Northeast Iran from 1993 to 2016. Soil & Tillage Research, 174: 177–192.
11. Da silva, V.P.R. 2004. On climate variability in northeast of Brazil. Journal of Arid Environment 58(4): 575–596.
12. Gan, T.Y. 1988. Hydroclimatic trends and possible climatic warming in the Canadian Prairies, water resources research, 34(11): 3009-3015.
13. Hu, Q.; and S. Feng. 2003. A Daily Soil Temperature Dataset and Soil Temperature Climatology of the Contiguous United States. Journal of Applied Meteorology, 42: 1139-1156.
14. Huang, F.; W. Zhan, W. Ju, and Z. Wang. 2014. Improved reconstruction of soil thermal field using two-depth measurements of soil temperature. Journal of Hydrology, 519: 711–719.
15. Kendall, M. 1975. Rank Correlation Methods. Charles Griffin, London.
16. Knight, J.H.; B. Minasny, A.B. McBratney, T.B. Koen, and B.W. Murphy. 2018. Soil temperature increase in eastern Australia for the past 50 years. Geoderma, 313: 241–249.
17. Liu, P.; Y. Xia, and M. Shang. 2020. A bench-scale assessment of the effect of soil temperature on bare soil evaporation in winter. Hydrology Research. 51(6): 1349-1357.
18. Mackay, A. 2008. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Journal of Environmental Quality, 37(6): 2407
19. Mann, H. 1945. Nonparametric tests against trend. Econometrica 13: 245–259.
20. Onwuka, B.; and B. Mang. 2018. Effects of soil temperature on some soil properties and plant growth. Advances in Plants & Agriculture Research, 8: 34-37.
21. Qian, B.; E.G. Gregorich, S. Gameda, D.W. Hopkins, and X.L. Wang. 2011. Observed soil temperature trends associated with climate change in Canada. Journal of Geophysical Research. 116. 1-16.
22. Shati, F.; S. Prakash, H. Norouzi, and R. Blake. 2018. Assessment of differences between near-surface air and soil temperatures for reliable detection of high-latitude freeze and thaw states. Cold Regions Science and Technology, 145: 86–92.
23. Sinha, T.; and K.A. Cherkauer. 2008. Time Series Analysis of Soil Freeze and Thaw Processes in Indiana. Journal of Hydrometeorology, 9: 936-950.
24. Yang M.; F.E. Nelson. N.I. Shiklomanov, D. Guo, and G. Wan. 2010. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Science Review, 103: 31–44.
25. Yang, Z.; O. YH, X. Xu, L. Zhao, M. Song, and C. Zhou. 2010. Effects of permafrost degradation on ecosystems. Acta Ecologica Sinica 30(1): 33–39.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb