Volume 12, Issue 46 And 795 (9-2025)                   Journal of Spatial Analysis Environmental Hazards 2025, 12(46 And 795): 19-48 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

arekhi S, Kour H A, Emadaddian S. Modeling and forecasting the risk of forest degradation on the emitting amount of carbon dioxide gas using the REDD model (Case study: Cities of Chalus and Nowshahr). Journal of Spatial Analysis Environmental Hazards 2025; 12 (46 and 795) : 2
URL: http://jsaeh.khu.ac.ir/article-1-3456-en.html
1- golestan university , arekhi1348@yahoo.com
2- golestan university
3- stan university
Abstract:   (2718 Views)
Reducing the emissions caused by deforestation and forest degradation REDD is a strategy to moderate climate change, which is used to reduce the intensity of deforestation and greenhouse gas emissions in developing countries. In the last few decades, drastic changes in land use have caused a significant decrease in Hyrkan forests located in Mazandaran province. For this purpose, the aim of this study is to investigate the changes in land use and its prediction for the year 2050 using the Markov chain and the REDD project to reduce carbon dioxide emissions for the cities of Nowshahr and Chalus. Using the images of TM and ETM+ sensors of Landsat satellite, a land use map has been prepared in three time periods related to the years 1989, 2000 and 2021. Maximum likelihood method was used to classify images from supervised classification. From the error matrix, the Kappa coefficient in this evaluation was equal to 0.83 for 1989, 0.81 for 2000, and 0.92 for 2021. The results show that the forest cover decreases in 2050. In contrast, the area of ​​range land, city, barren land, agriculture and wetland will increase. Based on the goals of the REDD project, the amount of carbon dioxide emissions was calculated until 2050. If the REDD project is not implemented, a large area of ​​forest cover will be destroyed and a lot of carbon dioxide is released. The amount of carbon dioxide in the project area in 2021 is 49,681 tons and will reach 806,732 tons by 2051, and with the implementation of the REDD project in the region, this amount of gas can be increased to the equivalent of 402,321 tons. 404411 tons of carbon dioxide was prevented from entering the upper atmosphere of the earth. Examining changes using satellite images can help managers and planners to make more informed decisions.
 
Article number: 2
     
Type of Study: Research | Subject: Special
Received: 2024/08/6 | Accepted: 2025/03/2 | Published: 2025/09/9

References
1. Get persistent links for your reference list or bibliography. Copy and paste the list, we’ll match with our metadata and return the links. Members may also deposit reference lists here too. Arekhi, S. 2011. Modeling spatial pattern of deforestation using GIS and logistic regression: a case study of northern Ilam forests, Ilam province, Iran, African Journal of Biotechnology, Vol.10, pp.16236-16249. [DOI:10.5897/AJB11.1122]
2. Atela, J.O.; C.H. Quinn, and P.A. Minang. 2014. Are REDD projects pro-poor in their spatial targeting? evidence from kenya, Applied Geography. 52: 14-24. [DOI:10.1016/j.apgeog.2014.04.009]
3. Bos, A.B.; V. De Sy, A.E. Duchelle, M. Herold, C. Martius, and N.E. Tsendbazar. 2019. Global data and tools for local forest cover loss and REDD+ performance assessment: Accuracy, uncertainty, complementarity and impact. International Journal of Applied Earth Observation and Geoinformation. 80: 295-311. [DOI:10.1016/j.jag.2019.04.004]
4. Brown, D.; D.S. Boyd, K. Brickell, C.D., Ives, N. Natarajan, and L. Parsons. 2021. Modern slavery, environmental degradation and climate change: Fisheries, field, forests and factories. Environment and Planning E: Nature and Space. 4(2), 191-207. [DOI:10.1177/2514848619887156]
5. Eastman, J.R. 2006. IDRISI Andes. Guide to GIS and Image Processing. Clark Labs, Clark University, Worcester, MA.
6. Eastman, J.R. 2012(b). IDRISI Help System. Accessed in IDRISI Selva 17.02. Worcester, MA: Clark University.
7. Ebrahimnia, V.; M. Rasouli, and S. Zandieh. 2009. Land Use Allocation Methods and Models. Armanshahr Architecture & Urban Development. 2(2): 9-22. (In Persian).
8. Eckert, S.; H.R. Ratsimba, L.O. Rakotondrasoa, L.G. Rajoelison, and A. Ehrensperger. 2011. Deforestation and forest degradation monitoring and assessment of biomass and carbon stock of lowland rainforest in the Analanjirofo region Madagascar, Forest Ecology and Management. 262(11): 1996-2007. [DOI:10.1016/j.foreco.2011.08.041]
9. Gaveau, D.L.A.; M. Kshatriya, D. Sheil, S. Sloan, E. Molidena, and A. Wijaya. 2013. Reconciling Forest Conservation and Logging in Indonesian Borneo. PLoS one. 8(8), e69887. [DOI:10.1371/journal.pone.0069887]
10. Gilmour, D. 2016. Forty Years of Community-Based Forestry: A Review of its Extent and Effectiveness, Food and Agriculture Organization of the United Nations (FAO), 176, 1-186.
11. Graham, V.; L. Nurhidayah, and R. Astuti. 2019. Reducing emissions from tropical deforestation and forest degradation, Encyclopedia of the World's Biomes, pp: 260-268. [DOI:10.1016/B978-0-12-409548-9.11928-1]
12. Guadalupe, V.; E.D. Sotta, V.F. Santos, L.J.G., Aguiar, M. Vieira, C.P. de Oliveira, and J.V.N. Siqueira. 2018. REDD+ implementation in a high forest low deforestation area: Constraints on monitoring forest carbon emissions. Land Use Policy. 76:414-421. [DOI:10.1016/j.landusepol.2018.02.015]
13. http://www.ncc.org.ir
14. Harris, N.L.; S. Petrova, F. Stolle, and S. Brown. 2008. Identifying optimal areas for REDD intervention: East kaliman tan, Indonesia as case study, Environmental Research Letters, pp1-11. [DOI:10.1088/1748-9326/3/3/035006]
15. Irmadi, N, and S. Yatin. 2017. Modeling Deforestation and Green Houses Gas Emissions in Morowali Utara District, Central Sulawesi Province, Indonesia, IOP Publishing, pp 1088- 1755.
16. Ji, Y, and R. Ranjan. 2019. A global climate-economy model including the REDD option. Journal of environmental management. 247: 342-355. [DOI:10.1016/j.jenvman.2019.06.052]
17. Kapos, V.; C. Ravilious, A. Campbell, B., Dickson, H. Gibbs, M. Hansen, I. Lysenko, L., Miles, J. Price, J.P.W., Scharlemann, and K. Trumper. 2008. Carbon and biodiversity, UNEP-WCMC, Cambridge. UK.
18. Khoi, D.D, and Y. Murayama. 2010. Forecasting areas vulnerable to forest conversion in the Tam Dao National Park Region, Vietnam, Journal of Remote Sensing, Vol. 2, pp. 1249-1272. [DOI:10.3390/rs2051249]
19. Kia-Daliri, H.; R. Akhavan, and I. Anissi. 2011. Timber marking and its impact on forest stand (Case study: Shourab district of Golband region). Iranian Journal of Forest. 3: 49 -59. (In Persian)
20. Kim, O.S. 2010. An assessment of deforestation models for reducing emissions from deforestation and forest degradation (REDD), Transactions in GIS. 14(5): 631-654. [DOI:10.1111/j.1467-9671.2010.01227.x]
21. Linkie, M.; R.J. Smith, and N. Leader-Williams. 2004. Mapping and predicting deforestation patterns in the lowlands of Sumatra. Biodiversity and Conservation. 13 (10), 1809-1818. [DOI:10.1023/B:BIOC.0000035867.90891.ea]
22. Lu, D.; P. Mausel, E., Brondi'zio, and E. Moran. 2004. Change detection techniques. International Journal of Remote Sensing, 25(12), 2365-2407. [DOI:10.1080/0143116031000139863]
23. Massarella, K.; S.M. Sallu, J.E. Ensor, and R. Marchant. 2018. REDD+, hype, hope and disappointment: The dynamics of expectations in conservation and development pilot projects. World Development, 109: 375-385. [DOI:10.1016/j.worlddev.2018.05.006]
24. Merten, B, and E.F. Lambin. 1997. Spatial modeling of tropical deforestation in southern Cameroon: spatial disaggregation of diverse deforestation processes. Applied Geography, 17 (2), 143-162. [DOI:10.1016/S0143-6228(97)00032-5]
25. Pearson, T.R.H.; S. Brown, and L. Murray. 2017. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manage, 12: 3. [DOI:10.1186/s13021-017-0072-2]
26. Pedroni, L.; A. Garcia, B. De jong, B. Schlamadinger, M., Steiniger, S. Brown, T. Pearson, K. Andrasko, and S. Scholz. 2008. BioCF RED Mosaic Methodology-Version1 of the BioCarbon Fund's proposed Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation. Published date: 2009/10/14, http://wbcarbonfi nance.org/Router.cfm? Page= Doclib&CatalogID=49189, Visited date: 2014/8/2.on its thirteen session held in Bali, from 3 to 15 December 2007.
27. Pedroni, L.; A. Garcia, De jong, B., Schlamadinger, B., Steiniger, M., Brown. S., Pearson, T., Andrasko, K., & Scholz. S. (2014). BioCF RED Mosaic Methodology-Version1 of the BioCarbon Fund's proposed Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation", Published date: 2009/10/14, available: http://wbcarbonfi nance.org/Router.cfm? Page=Doclib&CatalogID=49189.
28. Rafiee, R.; A. Salman Mahiny, and N. Khorasani. 2009. Assessment of changes in urban green spaces of Mashad city using satellite data, International Journal of Applied Earth Observation and Geoinformation, 11: 431-438. [DOI:10.1016/j.jag.2009.08.005]
29. Rajitha, K.; C. Mukherjee, R. Vinu Chandran, and M.Prakash Mohan. 2010. Landcover change dynamics and coastal aquaculture development: a case study in the East Godavari delta, Andhra Pradesh, India using multi-temporal satellite data ،International Journal of Remote Sensing, 30 ، (04) 6673 - 6667.
30. Rakatama, A.; M.S. Iftekhar, and R. Pandit. 2020. Perceived benefits and costs of REDD+ projects under different forest management regimes in Indonesia. Climate and Development. 12(5): 481-493. [DOI:10.1080/17565529.2019.1642178]
31. Schulz, J.J.; C. Cayuela, C., Echeverria, J. Salas, and J.M, Rey Benayas. 2010. Monitoring land cover change of the dryland forest landscape of Central Chile (1975-2008), Applied Geography, 30: 436-447. [DOI:10.1016/j.apgeog.2009.12.003]
32. Sheng, J.; X. Han, H. Zhou, and Z. Miao. 2016. Effects of corruption on performance: Evidence from the UN-REDD Program. Land Use Policy. 59: 344-350. [DOI:10.1016/j.landusepol.2016.09.014]
33. Taheri, M.; M. Gholamalifard, A. Riahi Bakhtiari, and S. Rahimoghli. 2014. Land cover changes modeling of Tabriz township using artificial neural network and markov chain, Journal of Physical Geography Research Quarterly, Vol. 45, pp. 97-121.
34. Ty, S.; N. Sasaki, A.H. Ahmad, and A.Z. Zainal. 2011. REDD development in Cambodia-potential carbon emission reductions in a REDD project, Formath. 10: 1-23. [DOI:10.15684/formath.10.1]
35. United Nations Framework Convention on Climate Change (UNFCCC). 2008. Report of the Conference of the Parties, on its thirteen session held in Bali, from 3 to 15 December 2007.
36. Vaclavik, T, and J. Rogan. 2009. Identifying trends in land use/land cover changes in the context of postsocialist transformation in Central Europe: A case study of the greater Olomouc region, Czech Republic. GIScience & Remote Sensing, 46 (1), 54-76. [DOI:10.2747/1548-1603.46.1.54]
37. Weishou, S.; J. Di, Z. Hui, Y. Yan Shouguang, H. Li, and L. Naifeng. 2011. The Response Relation between Climate Change and NDVI over the Qinghai-Tibet plateau, World Academy of Science, Engineering and Technology, International Science, Inde59, Vol 5, No 00, P 7838 - 7666.
38. Yuan, F.; K.E. Sawaya, B.C. Loeffelholz, and M.E. Bauer. 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan area by multitemporal Landsat remote sensing, Remote Sensing of Environment, 98: 317-328. [DOI:10.1016/j.rse.2005.08.006]
39. Zahedi, Q, and N. Zargham. 2014. Carbon sequestration in terrestrial ecosystems. University of Tehran Press.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb