XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kavyanpour Sangeno E, Motavalli S, Gholami S, Ghobadi G J. Examination of Smart Growth Indicators on Waste Management in the Coastal City of Mahmoudabad. Journal of Spatial Analysis Environmental Hazards 2025; 12 (46 and 795) : 6
URL: http://jsaeh.khu.ac.ir/article-1-3469-en.html
1- Department of Geography and Urban Planning, Noor Branch, Islamic Azad University, Noor, Iran
2- , Islamic Azad University, Noor , Sadr_m19701@yahoo.com
3- , Islamic Azad University, Noor
Abstract:   (1082 Views)

Waste management is one of the main challenges faced by modern cities. Given the population growth and the increasing generation of waste, there is a growing need for innovative and intelligent methods in this field. Smart growth indicators can serve as tools to improve urban waste management. A waste management system comprises a set of activities aimed at organizing community waste through engineering and sanitary approaches. One of the most significant problems of coastal areas is the lack of proper waste management. Smart growth in waste management focuses on integrating technology and sustainable practices to optimize waste collection, reduce environmental impacts, and promote recycling. This study presents key indicators and trends related to smart waste management. The research employs a mixed-methods approach, combining quantitative and qualitative data via a descriptive survey. The study collected opinions from 20 experts in waste management and urban growth issues, as well as from randomly selected residents of Mahmoudabad city. Data analysis was conducted using grounded theory for qualitative data and structural equation modeling for quantitative data. The results indicate that the smart growth indicator of modern leadership, with a mean score of 4.6, and adequate infrastructure, with a mean score of 4.04, hold the highest average values among the smart growth indicators affecting waste management in the coastal city of Mahmoudabad.
 
Article number: 6
     
Type of Study: Research | Subject: Special
Received: 2024/11/25 | Accepted: 2025/09/7 | Published: 2025/11/19

References
1. Get persistent links for your reference list or bibliography. Copy and paste the list, we’ll match with our metadata and return the links. Members may also deposit reference lists here too. Get persistent links for your reference list or bibliography.
2. Copy and paste the list, we'll match with our metadata and return the links.
3. Members may also deposit reference lists here too.
4. Get persistent links for your reference list or bibliography.
5. Copy and paste the list, we'll match with our metadata and return the links.
6. Members may also deposit reference lists here too.
7. Abdallah, M., Abu Talib, M., Feroz, S., Nasir, Q., Abdalla, H., & Mahfood, B. (2020). Artificial intelligence applications in solid waste management: A systematic research review. Waste Management, 109, 231-246. [DOI:10.1016/j.wasman.2020.04.057]
9. Andeobu, L., Wibowo, S., & Grandhi, S. (2022). Artificial intelligence applications for sustainable solid waste management practices in Australia: A systematic review. Science of The Total Environment, 834, 155389. [DOI:10.1016/j.scitotenv.2022.155389]
11. Brancoli, P., Bolton, K., & Eriksson, M. (2020). Environmental impacts of waste management and valorisation pathways for surplus bread in Sweden. Waste Management, 117, 136-145. [DOI:10.1016/j.wasman.2020.07.043]
13. Castiglione, A., Cimmino, L., Di Nardo, M., & Murino, T. (2023). A framework for achieving a circular economy using blockchain technology in a sustainable waste management system. Computers & Industrial Engineering, 180, 109263. [DOI:10.1016/j.cie.2023.109263]
15. Chauhan, A., Jakhar, S. K., & Chauhan, C. (2021). The interplay of circular economy with Industry 4.0 enabled smart city drivers of healthcare waste disposal. Journal of Cleaner Production, 279, 123854. [DOI:10.1016/j.jclepro.2020.123854]
19. Fang, B., Yu, J., & Chen, Z. (2023). Artificial intelligence for waste management in smart cities: A review. Environmental Chemistry Letters, 21, 1959-1989. https://link.springer.com/article/10.1007/s10311-023-01604-3 [DOI:10.1007/s10311-023-01604-3]
21. Filho, R. H., de Sousa, D. C. B., de Brito, W. A., Chaves, J. L. M. d. S., Sá, E. L., & Ribeiro, V. P. d. A. (2023). Increasing data availability for solid waste collection using an IoT platform based on LoRaWAN and blockchain. Procedia Computer Science, 220, 119-126. [DOI:10.1016/j.procs.2023.03.018]
23. Gue, I. H. V., Lopez, N. S. A., Chiu, A. S., Ubando, A. T., & Tan, R. R. (2022). Predicting waste management system performance from city and country attributes. Journal of Cleaner Production, 366, 132951. [DOI:10.1016/j.jclepro.2022.132951]
25. Pavolová, H., Lacko, R., Hajduová, Z., Šimková, Z., & Rovňák, M. (2020). The circular model in disposal with municipal waste: A case study of Slovakia. International Journal of Environmental Research and Public Health, 17, 1839. https://www.mdpi.com/1660-4601/17/6/1839 [DOI:10.3390/ijerph17061839]
27. Hidalgo-Crespo, J., Álvarez-Mendoza, C. I., Soto, M., & Amaya-Rivas, J. (2022). Quantification and mapping of domestic plastic waste using GIS/GPS approach at the city of Guayaquil. Procedia CIRP, 105, 86-91. [DOI:10.1016/j.procir.2022.02.015]
29. Hussain, I., Elomri, A., Kerbache, L., & Omri, A. E. (2024). Smart city solutions: Comparative analysis of waste management models in IoT-enabled environments using multiagent simulation. Sustainable Cities and Society, 103, Article 105247. [DOI:10.1016/j.scs.2024.105247]
31. Karthik, M., Sreevidya, L., Devi, R. N., Thangaraj, M., Hemalatha, G., & Yamini, R. (2023). An efficient waste management technique with IoT based smart garbage system. Materials Today: Proceedings, 80(Part 3), 3140-3143. [DOI:10.1016/j.matpr.2021.07.179]
33. Lin, K., Zhao, Y., Kuo, J.-H., Deng, H., Cui, F., Zhang, Z., Zhang, M., Zhao, C., Gao, X., & Zhou, T. (2022). Toward smarter management and recovery of municipal solid waste: A critical review on deep learning approaches. Journal of Cleaner Production, 346, 130943. [DOI:10.1016/j.jclepro.2022.130943]
37. Lipianina-Honcharenko, K., Komar, M., Osolinskyi, O., Shymanskyi, V., Havryliuk, M., & Semaniuk, V. (2024). Intelligent waste-volume management method in the smart city concept. Smart Cities, 7, 78-98. [DOI:10.3390/smartcities7010004]
41. Lu, D., Iqbal, A., Zan, F., Liu, X., Dong, Z., Jiang, C., & Chen, G. (2023). Integrated life cycle assessment with data envelopment analysis for enhancing medical waste management during a public health crisis. Journal of Cleaner Production, 426, 139074. [DOI:10.1016/j.jclepro.2023.139074]
45. Nimmagadda, S. M., & Harish, K. S. (2022). Review paper on technology adoption and sustainability in India towards smart cities. Multimedia Tools and Applications, 81, 27217-27245. https://link.springer.com/article/10.1007/s11042-022-12885-1 [DOI:10.1007/s11042-022-12885-1]
47. Salman, M. Y., & Hasar, H. (2023). Review on environmental aspects in smart city concept: Water, waste, air pollution, and transportation smart applications using IoT techniques. Sustainable Cities and Society, 94, Article 104567. [DOI:10.1016/j.scs.2023.104567]
51. Szpilko, D., de la Torre Gallegos, A., Jimenez Naharro, F., Rzepka, A., & Remiszewska, A. (2023). Waste management in the smart city: Current practices and future directions. Resources, 12, 115. [DOI:10.3390/resources12100115]
55. Zhang, Q., Zhang, X., Mu, X., Wang, Z., Tian, R., Wang, X., & Liu, X. (2021). Recyclable waste image recognition based on deep learning. Resources, Conservation and Recycling, 171, 105636. [DOI:10.1016/j.resconrec.2021.105636]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb