XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gheysvandi F, Masoompour Samakosh J, Mojarrad F, Ghahramani A. Classification of Persistent Rainfall in the West of Iran Based on Frequency of Occurrence Using the Lamb-Jenkinson Method. Journal of Spatial Analysis Environmental Hazards 2025; 12 (1 and 45) : 3
URL: http://jsaeh.khu.ac.ir/article-1-3476-en.html
1- Razi University
2- Razi University , j.masoompour@razi.ac.ir
Abstract:   (2057 Views)
The occurrence of persistent rainfall, resulting from the integration of multi-scale cyclonic systems, is prone to producing heavy to severe precipitation. Therefore, it is highly significant due to its potential to cause disasters such as floods and landslides, as well as its importance in water resource management for agricultural purposes. In this study, persistent rainfall refers to rainfall events lasting at least three consecutive days with a total precipitation of more than 1 millimeter. The aim of this research is to identify and classify these types of rainfall for the western region of Iran over a 30-year statistical period (1993 to 2022) for the first time using the Lamb-Jenkinson method. In this method, the central coordinates of the study area are used as the reference point in the calculations. Sixteen additional points are also determined around the reference point. With the availability of instantaneous standard sea-level pressure data for these points, it becomes possible to calculate the values of geostrophic wind and vorticity. By comparing these two quantities, the types of weather patterns in the L-J method—which include four types: directional, cyclonic, hybrid, and undefined—are identified and categorized. Disregarding the undefined category, it was ultimately determined that the provinces of Kermanshah, Kurdistan, Hamedan, Lorestan, and Ilam each had 50, 50, 50, 40, and 39 occurrences of the directional state, respectively. Moreover, the frequencies of the cyclonic state for these provinces were 69, 94, 65, 66, and 38, respectively, with cyclonic rotation percentages of 100%, 98%, 97%, 95%, and 97%, respectively. As for the hybrid state, the frequencies obtained for each province were 49, 53, 43, 41, and 38, respectively.
 
Article number: 3
     
Type of Study: Research | Subject: Special
Received: 2025/01/7 | Accepted: 2025/05/25 | Published: 2025/09/9

References
1. ثقفی، مریم؛ غلامرضا براتی، بهلول علیجانی، محمد مرادی. 1402. ناحیه بندی و واکاوی بارش‌ها‌ی فراگیر در نواحی بارشی ایران در بازه ی آماری 30 ساله (1987- 2016). تحقیقات کاربردی علوم جغرافیایی، 71: 103- 121.
2. حسینی، سید محمد. 1397. واکاوی روند بارش جنوب غرب آسیا در نیم سده ی گذشته. تحقیقات کاربری علوم جغرافیایی، 49: 151- 166.
3. علیجانی، بهلول؛ زین الدین جعفرپور، عباسعلی علی اکبری بیدختی، عباس مفیدی. 1386. تحلیل سینوپتیکی الگو‌‌‌‌ها‌ی گردشی بارش‌ها‌ی موسمی جولای 1994 در ایران. تحقیقات کاربردی علوم جرافیایی، 10: 7-38.
4. محمودی، پیمان؛ محسن حمیدیان پور، مهدی ثنایی. 1401. ویژگی‌ها‌ی همگرایی شار رطوبتی در زمان وقوع خشکسالی‌ها‌ وترسالی‌ها‌ی فراگیر ایران. پژوهش‌ها‌ی اقلیم شناسی، 52: 143- 168.
5. نظری پور، حمید. 1393. نواحی تداوم بارش ایران. جغرافیا و توسعه، 36: 195-208.
6. Conway, D; R.L. Wilby, and P.D.Jones. 1996. Precipitation and air flow indices over the British Isles. Climate Research, 7: 169-183.
7. DOI 10.3354/cr0007169
8. Goodess, C.M; J.P. Palutikof. 1998. Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. Int J Climatol, 18: 1051-1083.
9. https://doi.org/10.1002/(SICI)1097-0088(199808)18:10<1051::AID-JOC304>3.0.CO;2-1 [DOI:10.1002/(SICI)1097-0088(199808)18:103.0.CO;2-1]
10. Granja, J.A.; S. Brands, J. Bedia, A. Casanueva, and J. Fernández. 2023. Exploring the limits of the Jenkinson-Collison weather types classification scheme: a global assessment based on various reanalyses. Climate Dynamics, 61: 1829-1845.
11. DOI 10.1007/s00382-022-06658-7
12. Gu, S; S. Wu, L. Yang, Y. Hu, B. Tian, Y. Yu, N. Ma, P. Ji, and B. Zhan. 2023. Synoptic Weather Patterns and Atmospheric Circulation Types of PM2.5 Pollution Periods in the Beijing-Tianjin-Hebei Region. Atmosphere, 14: 942.
13. DOI 10.3390/atmos14060942
14. Jenkinson, A; F. Collison. 1977. An initial climatology of gales over the north sea. Synoptic climatology branch memorandum. 62: 18.
15. Jenkinson, A.F; T.M. Dessouky. 1977. An objective daily catalogue of surface pressure, flow and vorticity indices for Egypt and it's use in monthly rainfall forecasting. Meteorol Res Bull, 11: 1-25.
16. Jones, P.D; M. Hulme, and K.R Briffa. 1993. A comparison of Lamb circulation types with an objective classifcation scheme. Int J Climatol, 13:655-663.
17. Lai. 2010. relationship between tropospheric ozone and atmospheric circulation in Taiwan. PhD thesis. University of East Anglia.
18. Lai, IC; Y. Cheng, L.Wang, and T.Li. 2021. Two Distinct Types of 10-30-Day Persistent Heavy Rainfall Events over theYangtze River Valley. J. Climate, 34: 9571- 9584.
19. DOI 10.1175/JCLI-D-20-0741.1
20. Li, Z; Y. Shi, A. Argiriou, P. Ioannidis, and A. Mamara. 2022. A Comparative Analysis of Changes in Temperature and Precipitation Extremes since 1960 between China and Greece. Atmosphere, 13: 1824.
21. DOI 10.3390/atmos13111824.
22. Liao, W; L. Wu, S. Zhou, X. Wang, and D. Chen. 2021. Impact of Synoptic Weather Types on Ground-Level Ozone Concentrations in Guangzhou, China. Asia-Pacific J. Atmos. Sci, 57: 169-180.
23. DOI 10.1007/s13143-020-00186-2
24. Lu, R. 2000. Anomalies in the tropics associated with the heavy rainfall in East Asia during the summer of 1998. Adv. Atmos. Sci., 17: 205-220.
25. DOI 10.1007/s00376-000-0004-y
26. Otero, N; J. Sillmann, and T. Butler. 2018. Assessment of an Extended Version of the Jenkinson-Collison Classification on CMIP5 Models over Europe. Climate Dynmics, 50: 1559-1579.
27. DOI 10.1007/s00382-017-3705-y
28. Post, P; V. Truija, and J. Tuulik. 2002. Circulation weather types and their influence on temperature and precipitation in Estonia. Boreal Environ Research, 7: 281-289.
29. Spellman, G. 2000. The use of an index-based regression model for precipitation analysis on the Iberian Peninsula. Theor Appl Climatol, 66: 229-2.
30. Sun, X; Y. Wang. 2022. Comparisons of the Synoptic Characteristics of 14-Day Extreme Precipitation Events in Different Regions of Eastern China. Atmosphere, 13: 1310.
31. DOI 10.3390/atmos13081310
32. Trigo, R.M; C.C. DaCamara. 2000. Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20: 1559-1581.
33. https://doi.org/10.1002/1097-0088(20001115)20:13<1559::AID-JOC555>3.0.CO;2-5 [DOI:10.1002/1097-0088(20001115)20:133.0.CO;2-5]
34. Wang Y; R. Liu, and F. Xin. 2023. Impact of Atmospheric Circulation Patterns on Ozone Changes in the Pearl River Delta from 2015 to 2020. National library of medicine, 44: 3080-3088.
35. Wang, L; D. Liu, W. Yan, Zh. Kang, R. Liu, J. Zhang, and Z. Li. 2022. Spatio-temporal distribution, transport characteristics and synoptic patterns of ozone pollution near surface in Jiangsu province, China. Atmospheric Pollution Research, 13: 101616.
36. DOI 10.1016/j.apr.2022.101616
37. Wang, N; L. Zhu, H.R. Yang, and L. Han. 2017. Classification of Synoptic Circulation Patterns for Fog in the Urumqi Airport. Atmospheric and Climate Sciences, 7: 352-366.
38. DOI 10.4236/acs.2017.73026
39. Xie, Y; X. Zhi. 2021. Impact of COVID-19 Lockdown and Atmospheric Circulation on the Air Quality in Wuhan During Early 2020. E3S Web Conf, 299: 02011.
40. Yi, Z; Y. Wang, W. Chen, B. Guo, B. Zhang, H. Che, and X. Zhang. 2021. Classification of the Circulation Patterns Related to Strong Dust Weather in China Using a Combination of the Lamb-Jenkinson and k-Means Clustering Methods. Atmosphere, 12: 1545.
41. DOI 10.3390/atmos12121545
42. Zhang, L; L. Wang, G. Tang, J. Xin, M. Li, X. Li, F. Xin, Y. Qin,Y. Wang, and B. Hu. 2023. Comprehensively Exploring the Characteristics and Meteorological Causes of Ozone Pollution Events in Beijing during 2013-2020. Atmospheric Research, 294: 6978.
43. DOI 10.1016/j.atmosres.2023.106978
44. ثقفی، مریم؛ غلامرضا براتی، بهلول علیجانی، محمد مرادی. 1402. ناحیه بندی و واکاوی بارش‌ها‌ی فراگیر در نواحی بارشی ایران در بازه ی آماری 30 ساله (1987- 2016). تحقیقات کاربردی علوم جغرافیایی، 71: 103- 121.
45. حسینی، سید محمد. 1397. واکاوی روند بارش جنوب غرب آسیا در نیم سده ی گذشته. تحقیقات کاربری علوم جغرافیایی، 49: 151- 166.
46. علیجانی، بهلول؛ زین الدین جعفرپور، عباسعلی علی اکبری بیدختی، عباس مفیدی. 1386. تحلیل سینوپتیکی الگو‌‌‌‌ها‌ی گردشی بارش‌ها‌ی موسمی جولای 1994 در ایران. تحقیقات کاربردی علوم جرافیایی، 10: 7-38.
47. محمودی، پیمان؛ محسن حمیدیان پور، مهدی ثنایی. 1401. ویژگی‌ها‌ی همگرایی شار رطوبتی در زمان وقوع خشکسالی‌ها‌ وترسالی‌ها‌ی فراگیر ایران. پژوهش‌ها‌ی اقلیم شناسی، 52: 143- 168.
48. نظری پور، حمید. 1393. نواحی تداوم بارش ایران. جغرافیا و توسعه، 36: 195-208.
49. Conway, D; R.L. Wilby, and P.D.Jones. 1996. Precipitation and air flow indices over the British Isles. Climate Research, 7: 169-183.
50. DOI 10.3354/cr0007169
51. Goodess, C.M; J.P. Palutikof. 1998. Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. Int J Climatol, 18: 1051-1083.
52. https://doi.org/10.1002/(SICI)1097-0088(199808)18:10<1051::AID-JOC304>3.0.CO;2-1 [DOI:10.1002/(SICI)1097-0088(199808)18:103.0.CO;2-1]
53. Granja, J.A.; S. Brands, J. Bedia, A. Casanueva, and J. Fernández. 2023. Exploring the limits of the Jenkinson-Collison weather types classification scheme: a global assessment based on various reanalyses. Climate Dynamics, 61: 1829-1845.
54. DOI 10.1007/s00382-022-06658-7
55. Gu, S; S. Wu, L. Yang, Y. Hu, B. Tian, Y. Yu, N. Ma, P. Ji, and B. Zhan. 2023. Synoptic Weather Patterns and Atmospheric Circulation Types of PM2.5 Pollution Periods in the Beijing-Tianjin-Hebei Region. Atmosphere, 14: 942.
56. DOI 10.3390/atmos14060942
57. Jenkinson, A; F. Collison. 1977. An initial climatology of gales over the north sea. Synoptic climatology branch memorandum. 62: 18.
58. Jenkinson, A.F; T.M. Dessouky. 1977. An objective daily catalogue of surface pressure, flow and vorticity indices for Egypt and it's use in monthly rainfall forecasting. Meteorol Res Bull, 11: 1-25.
59. Jones, P.D; M. Hulme, and K.R Briffa. 1993. A comparison of Lamb circulation types with an objective classifcation scheme. Int J Climatol, 13:655-663.
60. Lai. 2010. relationship between tropospheric ozone and atmospheric circulation in Taiwan. PhD thesis. University of East Anglia.
61. Lai, IC; Y. Cheng, L.Wang, and T.Li. 2021. Two Distinct Types of 10-30-Day Persistent Heavy Rainfall Events over theYangtze River Valley. J. Climate, 34: 9571- 9584.
62. DOI 10.1175/JCLI-D-20-0741.1
63. Li, Z; Y. Shi, A. Argiriou, P. Ioannidis, and A. Mamara. 2022. A Comparative Analysis of Changes in Temperature and Precipitation Extremes since 1960 between China and Greece. Atmosphere, 13: 1824.
64. DOI 10.3390/atmos13111824.
65. Liao, W; L. Wu, S. Zhou, X. Wang, and D. Chen. 2021. Impact of Synoptic Weather Types on Ground-Level Ozone Concentrations in Guangzhou, China. Asia-Pacific J. Atmos. Sci, 57: 169-180.
66. DOI 10.1007/s13143-020-00186-2
67. Lu, R. 2000. Anomalies in the tropics associated with the heavy rainfall in East Asia during the summer of 1998. Adv. Atmos. Sci., 17: 205-220.
68. DOI 10.1007/s00376-000-0004-y
69. Otero, N; J. Sillmann, and T. Butler. 2018. Assessment of an Extended Version of the Jenkinson-Collison Classification on CMIP5 Models over Europe. Climate Dynmics, 50: 1559-1579.
70. DOI 10.1007/s00382-017-3705-y
71. Post, P; V. Truija, and J. Tuulik. 2002. Circulation weather types and their influence on temperature and precipitation in Estonia. Boreal Environ Research, 7: 281-289.
72. Spellman, G. 2000. The use of an index-based regression model for precipitation analysis on the Iberian Peninsula. Theor Appl Climatol, 66: 229-2.
73. Sun, X; Y. Wang. 2022. Comparisons of the Synoptic Characteristics of 14-Day Extreme Precipitation Events in Different Regions of Eastern China. Atmosphere, 13: 1310.
74. DOI 10.3390/atmos13081310
75. Trigo, R.M; C.C. DaCamara. 2000. Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20: 1559-1581.
76. https://doi.org/10.1002/1097-0088(20001115)20:13<1559::AID-JOC555>3.0.CO;2-5 [DOI:10.1002/1097-0088(20001115)20:133.0.CO;2-5]
77. Wang Y; R. Liu, and F. Xin. 2023. Impact of Atmospheric Circulation Patterns on Ozone Changes in the Pearl River Delta from 2015 to 2020. National library of medicine, 44: 3080-3088.
78. Wang, L; D. Liu, W. Yan, Zh. Kang, R. Liu, J. Zhang, and Z. Li. 2022. Spatio-temporal distribution, transport characteristics and synoptic patterns of ozone pollution near surface in Jiangsu province, China. Atmospheric Pollution Research, 13: 101616.
79. DOI 10.1016/j.apr.2022.101616
80. Wang, N; L. Zhu, H.R. Yang, and L. Han. 2017. Classification of Synoptic Circulation Patterns for Fog in the Urumqi Airport. Atmospheric and Climate Sciences, 7: 352-366.
81. DOI 10.4236/acs.2017.73026
82. Xie, Y; X. Zhi. 2021. Impact of COVID-19 Lockdown and Atmospheric Circulation on the Air Quality in Wuhan During Early 2020. E3S Web Conf, 299: 02011.
83. Yi, Z; Y. Wang, W. Chen, B. Guo, B. Zhang, H. Che, and X. Zhang. 2021. Classification of the Circulation Patterns Related to Strong Dust Weather in China Using a Combination of the Lamb-Jenkinson and k-Means Clustering Methods. Atmosphere, 12: 1545.
84. DOI 10.3390/atmos12121545
85. Zhang, L; L. Wang, G. Tang, J. Xin, M. Li, X. Li, F. Xin, Y. Qin,Y. Wang, and B. Hu. 2023. Comprehensively Exploring the Characteristics and Meteorological Causes of Ozone Pollution Events in Beijing during 2013-2020. Atmospheric Research, 294: 6978.
86. DOI 10.1016/j.atmosres.2023.106978

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb