XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

chehreara T, Hajivand paydari S. Understanding the mechanism of the atmospheric anomalies governing the summer dust in northeast Iran. Journal of Spatial Analysis Environmental Hazards 2023; 10 (4) :129-144
URL: http://jsaeh.khu.ac.ir/article-1-3393-en.html
1- Qazvin, Payame Noor University , ta_ch_55_ir@yahoo.com
2- Kharazmi University of Tehran
Abstract:   (2832 Views)
Identification of dust centers and, of course, the behavior of this phenomenon in different regions creates one of the problems of the last few decades, which is investigated as a hazard. To this end, statistics from 15 meteorological stations in the northeastern region of Iran, including North Khorasan, Razavi Khorasan, and South Khorasan provinces, were used over a 17-year period (2016-2000). To clarify the mechanisms governing dusty days, the meridional and zonal wind components and geopotential height were obtained by referring to the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR). HYSPLIT model and MODIS AOD values were used to track and identify dust centers. The results showed that during the warm season, due to the establishment of a strong quasi-stationary blocking system in the lower levels of the atmosphere, negative vorticity increased in the maximum air descent area, ultimately leading to the dominance of a northern flow for the region. Anomalies in geopotential height and vorticity were identified, and three dominant abnormal patterns were found in the occurrence of maximum dust storms in the region. An increase in geopotential height of more than 5 to 10 geopotential meters and an increase in negative vorticity are considered major conditions. By examining the tracking model and using satellite data, five main centers that affect over 90% of the region's dust storms were identified, among which Turkmenistan has a significant role with two separate centers and one common center with Uzbekistan in the occurrence of summer dust storms in northeastern Iran.
 
Full-Text [PDF 1951 kb]   (1071 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2023/09/20 | Accepted: 2023/12/18 | Published: 2024/04/28

References
1. برومندی، پریا.، بختیارپور، اسماء. 1395. منشاء یابی ذرات گردوغبار با بررسی خصوصیات فیزیکی و شیمیایی آنها و مدلسازی عددی در شهرستان مسجد سلیمان، مجله سلامت و محیط زیست، فصلنامه علمی پژوهشی انجمن علمی بهداشت محیط ایران، دوره 9، شماره چهارم، صص: 526-517.
2. بروغنی، مهدی.، پورهاشمی، سیما.، اسدی زنگنه، محمدعلی و حمیدرضا، مرادی. 1396. آشکارسازی مناطق برداشت گرد و غبار در شرق خاورمیانه با استفاده از شاخص‌های آشکارسازی گرد و غبار، مجله مخاطرات محیط طبیعی، سال ششم، شماره یازدهم، صص: 118-101
3. جلالی، نادر.، ایرانمنش، فاضل.، داودی، محمدهادی. 1396. شناسایی منشأ و مناطق تحت تاثیر طوفان‌های گرد و غبار در جنوب غرب ایران با استفاده از تصاویر مادیس، نشریه علمی پژوهشی مهندسی و مدیریت آبخیز، جلد 9، شماره 3، صص: 331-318.
4. حیدری نسب، مهدی، 1386. نقش باد در ایجاد لندفرم‌های بادی در منطقه سیستان، پایان نامه کارشناسی ارشد اقلیم شناسی در برنامه ریزی محیطی، زاهدان، دانشگاه سیستان و بلوچستان.
5. خسروی، محمود، 1389. بررسی توزیع عمودی گرد و غبار ناشی از طوفان در خاورمیانه با استفاده از مدل NAAPS در منطقه سیستان ایران، مجموعه مقالات چهارمین کنگره بین المللی جغرافیدانان جهان اسلام، زاهدان، دانشگاه سیستان و بلوچستان.
6. خسروی، محمود.، سلیقه، محمد. 1384. اثرات اکولوژیکی و زیست محیطی بادهای 120 روزه سیستان، پژوهشکده علوم زمین و جغرافیا، زاهدان، دانشگاه سیستان و بلوچستان.
7. رئیس پور، کوهزاد.، خسروی، محمود و تقی، طاوسی. 1389. بررسی تاثیر طوفان های شن به عنوان یکی از مهمترین عوامل بازدارنده ی توسعه در منطقه سیستان، مجموعه مقالات همایش ملی جغرافیا، امنیت و توسعه در جنوب شرق ایران، تهران، دانشگاه امام حسین (ع).
8. علیجانی، بهلول.، رئیس پور، کوهزاد. 1390. تحلیل آماری، همدیدی طوفان های گرد و خاک در جنوب شرق ایران (مطالعه موردی: منطقه سیستان)، مطالعات جغرافیایی مناطق خشک، سال دوم، شماره پنجم، صص: 132-107.
9. کارگر، الهام.، بداق جمالی، جواد.، رنجبر سعادت آبادی، عباس و حمید، گشتاسب. 1395. شبیه سازی و تحلیل عددی طوفان گرد و غبار شدید شرق ایران، نشریه تحیلیل فضایی مخاطرات محیطی، سال سوم، شماره 4، صص: 119-101.
10. مفیدی، عباس.، کمالی، سمیه.، زرین، آذر. 1392. ارزیابی توان مدل RegCM4 پیوند خورده با طرحواره غبار در آشکارسازی ساختار توفان های گرد و غباری تابستانه در دشت سیستان، فصلنامه علمی- پژوهشی جغرافیا (برنامه ریزی منطقه‌ای)، سال سوم، شماره 3، صص 69-51.
11. مفیدی عباس، زرین آذر(1391). بررسی ماهیت، ساختار و وردایی زمانی گردش بزرگ مقیاس جو تابستانه بر روی جنوب غرب آسیا. نشریه پژوهش های اقلیم شناسی. دوره سه. شماره 11.
12. مفیدی، عباس، جعفری، سجاد(1390). بررسی نقش گردش منطقه ای جو بر روی خاورمیانه در وقوع توفان های گردوغباری تابستانه در جنوب غرب ایران. نشریه مطالعات جغرافیایی مناطق خشک. سال دوم، شماره پنجم.
13. نامداری، سودابه؛ حاجیبگلو، علی؛ اباذری، غلامرضا(1399). تحلیل تغییرات کانونهای گردوغبار داخلی ایران در بیست سال اخیر. نشریه علمی جغرافیا و برنامهریزی، سال 52 ، شماره 87 ، فصل زمستان.
14. باقرآبادی، رسول؛ معین الدینی، مظاهر(1400). منشأیابی جهتی طوفانهای گرد و غبار شهر کرج. نشریه پژوهشهای اقلیم شناسی. سال دوازدهم | شماره چهل و هفتم.
15. سلیمانی ساردو، فرشاد؛ حسین حمزه، نسیم؛ کرمی، سارا؛ هاشمی نژاد، محمد؛ ناطقی، سعیده(1400). گسیل و انتقال ذرات گردوغبار در منطقه جازموریان (مطالعه موردی: طوفان گرد و غبار 24 الی 26 نوامبر 2016 ). نشریه پژوهشهای اقلیم شناسی. سال دوازدهم | شماره چهل و هشتم.
16. لطفی نسب اصل، سکینه؛ گوهر دوست، آزاده؛ درگاهیان، فاطمه؛ خسروشاهی، محمد(1400). تحلیل بادهای توأم با گردوغبار و فرساینده در استان کرمان با هدف ارائه تقویم پیشبینی و مدیریت کنترل گردوغبار. نشریه علمی تحقیقات حمایت و حفاظت جنگلها و مراتع ایران. جلد 19 شماره 2.
17. بروغنی، مهدی؛ میرچولی، فهیمه؛ محمدی، مازیار(1401). پهنه بندی آسیب پذیری گردوغبار با استفاده از تصاویر ماهواره ای و مدل های یادگیری ماشین. نشریه مطالعات جغرافیایی مناطق خشک. دوره دوازدهم، شماره چهل و هفتم.
18. AlizadehChoobari, O., Zawar-Reza, P., Sturman, A., (2014). The global distribution of mineral dust and its impacts on the climate system: A review. Atmospheric Research 138(1), 152-165.
19. Shao, Y., Wyrwoll, K.H., Chappell, A., Huang, J., Lin, Z., McTainsh, G.H., (2011). Dust cycle: an emerging core theme in Earth system science. Aeolian Research 2(4), 181–204.
20. Dayan, Koch.J, (1986),A Synoptic analysis of the meteorological conditions affecting dispersion of pollutants emitted from tallstacksin the coastal plain of Israel, pp : 537 – 543.
21. Goudie and Middleton, (2002), Saharan dust storms, nature and consequences, Earth
22. science review, pp : 56.
23. Hamish. A, Grant.M, tanish A, (2001), Inter-regional transport of Australian dust storms Soil erosion reSearch for the 21th century , pp : 28.
24. Kutiel.H, Alpert.p, (2005), Synoptic of dust transportation days from Africa toward Italy and central Europe, pp : 1 – 14.
25. Wang W, (2005), A synoptic model on east Asian dust emission and transport , Atmospheric science and air quality conferences china , pp : 13.
26. Weihong. Q. and Shaoyinshi, (2001), Variations of the dust storm in china and its climate control, journal of climate , pp : 15 .
27. Kaskaoutis, D.G., Kosmopoulos, P., Kambezidis, H.D., Nastos, P.T., 2007. Aerosol climatology and discrimination of different types over Athens, Greece based on MODIS data. Atmos. Environ. 41, 7315–7329.
28. Draxler, R. Hess, G. D. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion and Deposition. 1998. Australian Meteorological Magazine. Vol. 47. Pp: 295-308.
29. Draxler, R. Stunder, B. Rolph, G. Stein, A. Taylor, A. 2009. Hybrid single-particle Lagrangian integrated trajectories 4 user's guide. NOAA Tech. Memo, ERL-ARL.
30. Draxler, R.R., G.D.Hess. (1997). Description of the HYSPLIT_4 Modeling System. NOAA Technical Memorandum.ERL ARL. 224: 1-25.
31. Draxler, R. Gillette, A. Kirkpatrick, S. Heller, J. 2001. Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmospheric Environment Vol. 35. Pp: 4315-4330.
32. Gholami, H, Mohamadifar, A, Rahimi, S, Kaskaoutis, D. G, & Collins, A. L. (2021). Predicting land susceptibility to atmospheric dust emissions in central Iran by combining integrated data mining and a regional climate model. Atmospheric Pollution Research, 12 (4), 172-187.
33. Boroughani, M, Pourhashemi, S, Hashemi, H, Salehi, M, Amirahmadi, A, Asadi, M. A. Z, & Berndtsson, R. (2020). Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping. Ecological Informatics, 56, 101059
34. Gholami, H, Mohamadifar, A, Sorooshian, A, & Jansen, J. D. (2020) a. Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin, Iran. Atmospheric Pollution Research, 11(8), 1303-1315.
35. Garofalide, S., Postolachi, C., Cocean, A., Cocean, G., Motrescu, I., Cocean, I., ... & Leontie, L. (2022). Saharan Dust Storm Aerosol Characterization of the Event (9 to 13 May 2020) over European AERONET Sites. Atmosphere, 13(3), 493.
36. Tan, S., Chen, B., Wang, H., Che, H., Yu, H., & Shi, G. (2022). Variations in Aerosol Optical Properties over East Asian Dust Storm Source Regions and Their Climatic Factors during 2000–2021. Atmosphere, 13(6), 992.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb