Search published articles


Showing 3 results for Faraji

Hadi Nazaripooya, Parviz Kardavani, Abdoraze Farajirad,
Volume 2, Issue 2 (7-2015)
Abstract

The runoff simulation have  particular importance in Civil works, river training, design and planning of ground water resources, flood control and prevention of environmental hazards and reduction of erosion and sedimentation in the watershed. The runoff in each region varies according to climatic conditions, hydrological, soil and vegetation in the basin. Simulate these processes need to provide the necessary information on the spatial variation of these factors.  In this context, given the diversity of hydrological models, to achieve the most appropriate simulation of hydrologic models and choose the appropriate model requires the evaluation of their performance in each area is commensurate with hydrological conditions. So hydrologicl models, need to recognize the capabilities and limitations of basins.  In this study, the performance of the two models of rainfall – runoff including IHACRES and SWAT models was compared and evaluated in runoff simulation for two watersheds Yalfan and Sulan in Hamedan province in West of Iran .  

     The SWAT model uses various information, including;  hydrometry, climate , soil , topography, vegetation and land use . SWAT (Soil & Water Assessment Tool) is a river basin scale model developed to quantify the impact of land management practices in large and complex watersheds. SWAT model is a hydrology model with the following components: weather, surface runoff, return flow, percolation, evapotranspiration, transmission losses, pond and reservoir storage, crop growth and irrigation, groundwater flow, reach routing, nutrient and pesticide loading. SWAT model uses a two-level disaggregation scheme; a preliminary sub-basin identification is carried out based on topographic criteria, followed by further discretization using land use and soil type considerations. Areas with the same soil type and land use form a Hydrologic Response Unit (HRU), a basic computational unit assumed to be homogeneous in hydrologic response to land cover change.

     IHACRES model is a catchment-scale rainfall – stream flow modeling methodology whose purpose is to characterize the dynamic relationship between rainfall and stream flow, using rainfall and temperature (or potential evaporation) data, and to predict stream flow. The model can be applied over a range of spatial and temporal scales - from small experimental catchments to basins; using minute, daily or monthly time steps. It can be used to fill gaps in data, extend stream flow records, as well as explore the impact of climate change and identify effects of land use changes.

    Data used in this study includes temperature, precipitation and runoff in the period of 2010-1983. Rainfall and temperature data were used from weather stations and runoff gauging stations from basin Sulan  and Yalfan hydrometry stations. In this study we select two periods, first period from 1983 to1999 for calibration and the second period from 1999 to 2009 for validation. Some of the required basic information such as soil, vegetation, topography and land-use maps were used to carry out the research were received from the Research Center of Agriculture and Natural Resources of Hamedan province.      Accordingly, after collecting basic data and analysis of the sensitivity parameters, then calibrate and validate the models. To determine the ability of models Nash Sutcliffe (NS) and determination coefficient ( R2) were evaluated .

    The results showed that both models are acceptable in simulating runoff in both basins. According to the results obtained in the simulation by SWAT model in both basins, Nash Sutcliffe on a monthly scale in the Yalfan basin for calibration period is 0.68 and verification period is 0. 74 and for Sulan basin calibration period is 0.69 and verification period 0.76.

    The flow rate during validation periods have high accuracy. In the Yalfan basin observed daily flow 1.17 cubic meters per second and simulated flow is 1.10 cubic meters per second. As well as an overview of the values of the coefficient of determination can be seen in both basins, amount represents the high precision simulation in monthly and daily scales. Based on the results obtained in the two basins, IHACRES model has been good performance on a monthly scale, so that the Nash Sutcliffe in the Yalfan basin for calibration period 0.68 and for verification periodic 0.72 in the Sulan basin for calibration period 0.64 and for verification periodic 0. 65. In general, both models can be seen by comparing the SWAT model was calibrated and validated with the highest Nash Sutcliffe on the monthly and daily scales. Generally it can be concluded that to simulate the daily and monthly runoff, the SWAT model is recommended for evaluation hydrology process in the Yalfan and Sulan basins. It is essential in most similar studies to determine of rainfall-runoff models with respect to variability of rainfall-runoff models in different climate periods of dry and wet years.


Mr Masoud Jalali, Mr , Mr Abdullah Faraji, Mr Ali Mohammad Mansourzadeh, Mr Sayyed Mahmoud Hosseini Seddigh,
Volume 6, Issue 4 (2-2020)
Abstract

Analysis and zoning of thermal physiological stresses in Iran
 
Abstract
Human health is influenced by weather variables in all circumstances, including atmospheric pressure, humidity and temperature around them. Based on climate hazard and climate changes, different parts of human life and economic and social strategies such as health, hydrological pollutants And agriculture had a profound effect, including the discussion of the effects of thermal stress on human health over the last few decades, and has become a major issue in the world's scientific circles. Heat and cold stresses, the exposure of humans to extreme heat and cold, are part of the extreme events, often encountered by people during daily activities or in the workplace, and affecting human physical activities. It is important that, if the body is not cooled through transpiration or cooling mechanism, severe deaths are inflicted on human health; therefore, the person has to reduce his activity in order to reduce the adverse effects of heat stress. Hence, many researchers consider the thermal stress component more important than other components in assessing human health.
In this study, using the physiological equivalent thermometer of PET thermal stress assessment and zoning of human thermal physiological stresses in Iran, with the length of the common statistical period from 1959 to 2011, and for the arsenal of thermal physiological stresses of Iran Forty stations have been used as representatives of Iranian cities. To calculate the physiological equivalent thermal temperature, all the effective meteorological elements in the human energy bill are measured at an appropriate height of climate biology, such as 1/5 meters above the Earth's surface. Data on climatic elements are provided by the Meteorological Organization of Iran. In the absence of data for some courses, linear regression method was used to reconstruct these missing data. After calculating the indices, the frequencies were also monitored and finally, using the GIS technique, the Kriging method of the study area was based on the frequency of occurrence of the indicators. Therefore, in order to achieve the results and objectives of the present study, software such as SPSS for data normalization as well as missing data was analyzed and analyzed using Ray Man's model based on meteorological elements to calculate the equivalent thermal physiological temperature of humans. Also, using the GIS software and Ordinary Kriging method, the best interpolation method was used to zon the human cysiological stresses.
Today, in the planning of human health and comfort, the study of the physiological thermal stress plays an important role. In this regard, weather conditions can be used in the long-term planning of climate and in the short term planning of atmospheric conditions. In the present study, using the thermophysical Thermal Equivalent Thermal Index (PET), the climate climatic Atlas of Iran was prepared on a monthly basis. Calculated values for 40 stations in the country with a total statistical period of 52 years (1959-2011) were prepared. The results of this study showed that the spatial distribution of the physiological equivalent thermal temperature index in the country follows the altitudes, roughness and latitude. Accordingly, the low values of the indicator, which relate to the stresses of the cold, are consistent with the high and mountainous regions as well as the high latitudes, and vice versa, the thermal stresses occur in low and low elevations, as well as low latitudes, which of course, severe heat stresses occurred in the summer. Because throughout this season, the entire country of Iran is dominated by high tidal altitudes at high and low levels of ground pressure (1000 hp) with its warm and dry air, causing extreme heat and The term effects of heat waves on humans, heat loss, thermal contraction of the muscles and skin dryness, infectious or skin diseases, inflammation, sunburn, dizziness, fatigue, and mortality due to an increase in allergies can be mentioned. Significant differences in the environmental conditions of the mountainous masses of Kerman, Yazd and Sistan and Baluchestan provinces with their surrounding areas or low and low northern areas, and especially the Moghan Plain and Sarakhs plain, located in the upper latitudes of the country The issue is that the role of elevation in spatial distribution of the country's climate is much more colorful than factors such as latitude and longitude. The results of the analysis of the monthly thermal physiological stress maps showed that in terms of the area without tension, the march of the month with 47/8% of the area (778424/2km2) is in the first place and has the most favorable environmental conditions, The moon with 43/5 percent of the area (709275/2km2) is in the second position and also in March with 22.6 (359128/9km2) in the third, August and the last month. The highest thermal stresses (29
Roya Poorkarim, Hossein Asakereh, Abdollah Faraji, Mahmood Khosravi,
Volume 9, Issue 4 (3-2023)
Abstract

In the present study, the data of the ECMWF for a period of 1979 to 2018 was adopted to analyze the long term changes (trends) of the number of cyclones centers of the Mediterranean Sea.There are many methods (e.g. parametric and non- parametric)  for examining changes and trends in a given dataset. The linear regression method is of parametric category and the most common nonparametric method is Mann-Kendall test. By fitting the Mann-kendall model and the linear regression model, the frequency of the cyclone centers of the Mediterranean basin was evaluated in seasonal and annual time scales. Analyzing the trend of changes of the number of cyclone centers on a seasonal scale showed that the five-day duration have had a significant trend in spring, autumn and summer. Whilest on an annual scale, there was no significant trend in any of the duration. By fitting the regression model on seasonal and annual scale, one- and two-day duration have a positive regression line slop.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb