Search published articles


Showing 3 results for Ghobadi

Gholamreza Janbazghobadi,
Volume 6, Issue 3 (9-2019)
Abstract

Abstract 
Fire in natural resources is one of the crises that causes irreparable damage to ecosystems and the environment every year. The purpose of this research is to attempt to study areas of risk aversion and to prepare a map of forest fire hazard area by integrating topographic data and other additional information from a GIS system for Golestan province. In order to carry out this research, firstly, with the removal of the recorded data related to the situation of fires occurred in 2009 and 2010, the domain of all natural resources of Golestan province was carried out. In order to identify areas with high fire potential, static parameters were used to control the burning of forest forests (elevation, slope, slope direction, land use / land cover, evaporation rate). Each of the static parameters is divided into different classes And to each class, using bachelor's knowledge and review of research, ground data and the results of the above studies are weighted from one to ten. In the following, by using overlap of these layers with different weights, areas with high fire potential were identified for the forests of Golestan province. Finally, all weights were summed up, the final weight was obtained and a fire hazard map was prepared. The Arctic GIS9.2 software has been used to generate a fire hazard map. Also, The fire risk index (FRSI), the Normalized Difference Vegetation Index(NDVI), and the zoning map, have a fire hazard in the risk category (very low to high) ). The results showed that most of the fires occurred in hardy and covered with forested areas, as well as in the forested areas with a crown and an intermediate cover, and in the next stage, in the woods and shrubland areas. In calculating the calculation of fire density in altitudes, the results showed that approximately 90 percent of fires occurred in average altitudes between 700 and 1500 meters. Overall, the findings showed that 90 percent of burns occurred continuously in areas With fire hazard, 30% in hazardous areas and 60% in extreme areas, so that its Galikesh, Minoodasht, , Azadshahr has high risk of high fire.                  

Dr. Firouz Mojarrad, Dr. Hassan Zolfaghari, Mr. Mehdi Keyghobadifar,
Volume 6, Issue 4 (2-2020)
Abstract

 
Analysis of the Characteristics of Sultry Days in Iran
 
Extended Abstract
Sultry phenomenon occurs due to the combined effect of high temperature and humidity. Sultry intensity increases with increasing relative humidity and decreases with decreasing temperature. This phenomenon has a tremendous impact on comfort and other human activities. Various indices have been used to study this phenomenon in Iran and in the world. According to previous studies, and as far as information is concerned, there has not been a comprehensive study across Iran on the characteristics of sultry days based on degree of severity. Therefore, the purpose of this study is to investigate the frequency, duration and severity of sultry days and its temporal and spatial analysis throughout Iran.
To do this research, daily temperature, relative humidity and partial water vapor pressure of 101 synoptic stations were used for a 28-year period (1987-2014). In choosing the indices of sultriness, the goal was to select indices that show the sultry state on a daily scale. For this purpose, in the first stage, 16 empirical sultry or sultry-related indices were used, all of which used climatic parameters such as temperature, relative humidity, water vapor pressure and cloudiness to calculate the sultry state or comfort. Among them, 13 indices were eliminated because they surveyed the phenomenon on a monthly or annual basis or were not consistent with the objectives of this study. Finally, according to the objectives of the study, three indices were chosen: 1- Sultry Intensity Index (Lancaster-Carstone empirical equation), 2- Partial Water Vapor Pressure Index (partial water vapor pressure equal to or greater than 18.8 hPa), and 3- Heat Index (HI).
The results of this study showed that two indices of Sultry Intensity and Partial Water Vapor Pressure are suitable for explaining the conditions in Iran and their outputs are not significantly different. But Heat Index did not lead to desirable results. According to the results of the Sultry Intensity Index, the sultry phenomenon is not comprehensive in the country and is limited to 21 stations adjacent to the Caspian Sea coasts in the north (besides Parsabad Moghan Station) and the Persian Gulf coasts (besides Ahwaz station) and the Oman Sea coasts in the south. In other parts of the country, due to their internal and leeward position, being away from moisture sources, poverty or lack of vegetation and insufficient penetration of wet and rainy systems, there is no sultry condition and, on average, even one day is not seen with sultry circumstances. On the southern coasts, on average, sultry conditions begin on April 3 and end on November 16. Therefore, in this area, 7 months and 11 days of the year have sultry conditions. This is natural due to the lower latitude and the Azores high pressure sovereignty in the south. But on the northern coasts, the sultry period is shorter and with a 48-day delay compared with the southern coasts, the average sultry day begins on May 22 and ends on October 12. Therefore, the duration of the sultry period is on average 4 months and 19 days. In terms of the number of sultry days, the most frequencies belong to the southern coasts stations. The largest number of sultry days related to the Chabahar port on the coasts of the Oman Sea with 291 days, followed by Jask port with 264 days. The lowest number of sultry days is also from Ahwaz station with 1 day and then Mahshahr port with 42 days. Among the stations on the southern coasts, the Oman Sea stations compared with the Persian Gulf stations have more sultry days due to lower latitudes, Azores high pressure sovereignty and Southeast Asian monsoon moisture influence. In contrast, the number of sultry days on the northern coasts is much lower and averages 140 to 150 days a year. Sultry severity is also less, so that there are no extreme severe sultry days in any of the stations on the northern coasts. But the number of extreme sultry days is remarkable on the coasts of the South, to 160 days in the port of Chabahar and 111 days in the port of Jask. At Parsabad Moghan in the north and port of Mahshahr in the south, due to distance from the coast and lack of sufficient moisture, the duration and severity of sultry is much lower and there are basically no days of severe and extreme sultry states. The annual trend of the number of sultry days at any station is not significant.
 
Keywords: Sultry, Temperature, Relative Humidity, Sultry Indices, Iran
 
 
Esmaeil Kavyanpour Sangeno, Sadroddin Motavalli, Sara Gholami, Gholamreza Janbaz Ghobadi,
Volume 8, Issue 4 (1-2021)
Abstract


Waste management is one of the main challenges faced by modern cities. Given the population growth and the increasing generation of waste, there is a growing need for innovative and intelligent methods in this field. Smart growth indicators can serve as tools to improve urban waste management. A waste management system comprises a set of activities aimed at organizing community waste through engineering and sanitary approaches. One of the most significant problems of coastal areas is the lack of proper waste management. Smart growth in waste management focuses on integrating technology and sustainable practices to optimize waste collection, reduce environmental impacts, and promote recycling. This study presents key indicators and trends related to smart waste management. The research employs a mixed-methods approach, combining quantitative and qualitative data via a descriptive survey. The study collected opinions from 20 experts in waste management and urban growth issues, as well as from randomly selected residents of Mahmoudabad city. Data analysis was conducted using grounded theory for qualitative data and structural equation modeling for quantitative data. The results indicate that the smart growth indicator of modern leadership, with a mean score of 4.6, and adequate infrastructure, with a mean score of 4.04, hold the highest average values among the smart growth indicators affecting waste management in the coastal city of Mahmoudabad.
 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb