Search published articles


Showing 2 results for Hojjat

Peyman Mahmoudi, Taghi Tavosi, Daneshmand Hojjat, Abdolmajid Shabab Moghadam,
Volume 1, Issue 2 (7-2014)
Abstract

Hot, humid weather causes to the sultry feel. Sultry condition is usually accompanied with loss of physical ability and human respiratory and it has an adverse effect on peoples who have circulatory or other heart problems and this feeling is more than others. Sultry feel is a feeling like any other sensitive reflections of mental state. And this state apparently can’t be measured by special instruments. With this description, there are a lot of efforts has been done to identify this phenomenon by meteorologists and climatologists. And a series of psychological climate tests show that we can examine the creation and incidence of this sense based on empirical studies as a scientific and objective attitude. Therefore, this study aims to classify the sultry days in the southern half of Iran based on sultry continuous hours. And the obtained results are presented as a form of zoning maps.

     The studied zone in this research is selected stations in the southern half of the country located in the province of Sistan & Baluchestan, Kerman, Hormozgan, Fars, Bushehr and Khuzestan. This area is located between two latitude 25 and 35 north and length of 47 to 63 east degrees. To achieve this goal, hourly partial pressure of water vapor of 13 selected stations were obtained for a period of 15 years (1995-2009) from Meteorological agency. After obtaining data and creating the database, to separate sultry conditions from non-sultry conditions, threshold of partial pressure of water vapor of Scharlou which was equivalent to 8.18 Hpa were used.

    Based on these data, the hours and days that the partial pressure of water vapor was equal or greater than 8.18 hpa will have sultry conditions and otherwise, they have non-sultry conditions. Then, based on this threshold, sultry days were divided into eight categories. The basis of this classification is that if in a particular day among eight branches of observation, one station, only in one observation record a pressure equal to or greater than 8.18 hpa was observed, it will be placed in first class and if only two observed records a value equal or greater than defined value, it will be placed in second catagory and finally, if all eight observations amounts equal to or greater than 8.18 had been recorded, it will be placed in eight class. After placing the sultry days in one of eight branches of classes, long-term averages of monthly, quarterly, quarterly and annual were calculated and mapped.

    Based on defined thresholds, sultry days were separated from non-sultry days, then sultry days were extracted and it was placed in first to eighth classes. The results of this classification showed that on monthly scale, January has the fewest sultry days in twelve months of the year. In this month, only two stations of Chabahar and Bandar Abbas had the sultry days of eighth classes. It means that 24 hours, they were in sultry conditions. Other stations that have a sultry day in this month, often their sultry days are from first to fourth classes and it means that they had maximum 3 to 12 hours of sultry conditions during the day. Most sultry days can be seen in two June and July months. So, in these two months, all studied stations have at least one sultry day,Specially  in three stations of Chabahar, Bandar Abbas and Bushehr. And all 61 days, they have sultry conditions. In terms of classification of sultry days, all 61 days of Chabarhar station are part of sultry days of eighth class. In two stations of Bandar Abbas and Bushehr, except few days that are from sixth and seventh classes, other days are from eightth class, other stations experienced one of the eightth classes of sultry days with different ratios. , and at the seasonal scale, winter has the lowest days of sultry and summer has the most days of sultry days. In term of classification of sultry days in seasonal scale, there are conditions as monthly scale. The interesting point in summer season is that sultry days on two stations of Zabul (35 days) and Iranshahr (51 days) are considered due to their Geographical locations. In Zabul station, the reason of these sultry days can be due to the neighborhood of this station with Hamoon Lake. But it should be mentioned about Iranshahr stationthat the reason of its sultry condition is entrance of monsoon low pressure and moisture transfer by the system on the south-east of Iran an especially Iranshahr. On an annual basis, it was also observed that always in south east of Iran (Especially Chabahar station), the number of sultry days is much more than south west of Iran, also occurring sultry days with eighth, seventh and sixth classes in this zone is so different from south-west of Iran. The reason of these differences in number of sultry days and sultry classes  related to the latitude of south east of Iran which is lower that south west and in other words, we can say that climate of south East of Iran is more similar to tropical climate than subtropical climate. 


Dr Abbas Ali Vali, Dr Sayyed Hojjat Mousavi, Mr Esmaeil Zamani,
Volume 6, Issue 3 (9-2019)
Abstract

Introduction
Dust storms as one of the environmental hazards of the arid regions of the globe, including the southern, southwestern, eastern and central parts of Iran, has caused many environmental problems that confirm the need for studying and crisis managing its in scientific and executive congresses. Therefore, the present study attempts to evaluate the effects of climate elements on temperature, precipitation, humidity, evapotranspiration and vegetation index on the frequency of dust storms in Yazd province during the period of 5 years (2009-2014).
 
Data and Methodology
So, after determining the synoptic stations of the area, the dust data were extracted based on the code of the present weather phenomena and the values of the climatic elements. In the next step, their spatial zonation was determined through the interpolation method. Then, using the MODIS images, EVI index data were calculated according to the principle of time matching. Finally, a variety of simple and multiple regression models were fitted to estimate the occurrence frequency of dust, and the most appropriate relationships with higher preference values were reported.
 
Findings and Conclusions
The results showed that there was a significant relationship between the total dust with evapotranspiration and relative humidity with a R square of 0.973 and 0.614 and the standard deviation of 24.104 and 92.477 at sig. level of 99% and 95%. Also, there is the maximum significant relation between external dust with evapotranspiration and relative humidity with a R square 0.968 and 0.621, and the standard deviation was estimated to be 0.173 and 75.427 at sig. level of 99% and 95%, respectively. Internal dusts with evapotranspiration and maximum temperature with a R square of 0.770 and 0.377 and standard deviation of 15.1751 and 64.22 have a significant relationship with sig. level of 95%. The results of the total, external and internal dust storms with climatic elements and vegetation cover showed a significant correlation with the R square of 0.994, 0.988 and 0.956 and the standard error of estimation of 18.13713, 24.2555551 and 10.49989 at sig. level of 99% and 95%, respectively, which indicates the systematic function of climatic elements and vegetation cover in the occurrence of dust.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb