Showing 2 results for Kour
Dr Saleh Arekhi, Mr Habib Allah Kour, Somia Emadaddian,
Volume 8, Issue 4 (1-2021)
Abstract
Reducing the emissions caused by deforestation and forest degradation REDD is a strategy to moderate climate change, which is used to reduce the intensity of deforestation and greenhouse gas emissions in developing countries. In the last few decades, drastic changes in land use have caused a significant decrease in Hyrkan forests located in Mazandaran province. For this purpose, the aim of this study is to investigate the changes in land use and its prediction for the year 2050 using the Markov chain and the REDD project to reduce carbon dioxide emissions for the cities of Nowshahr and Chalus. Using the images of TM and ETM+ sensors of Landsat satellite, a land use map has been prepared in three time periods related to the years 1989, 2000 and 2021. Maximum likelihood method was used to classify images from supervised classification. From the error matrix, the Kappa coefficient in this evaluation was equal to 0.83 for 1989, 0.81 for 2000, and 0.92 for 2021. The results show that the forest cover decreases in 2050. In contrast, the area of range land, city, barren land, agriculture and wetland will increase. Based on the goals of the REDD project, the amount of carbon dioxide emissions was calculated until 2050. If the REDD project is not implemented, a large area of forest cover will be destroyed and a lot of carbon dioxide is released. The amount of carbon dioxide in the project area in 2021 is 49,681 tons and will reach 806,732 tons by 2051, and with the implementation of the REDD project in the region, this amount of gas can be increased to the equivalent of 402,321 tons. 404411 tons of carbon dioxide was prevented from entering the upper atmosphere of the earth. Examining changes using satellite images can help managers and planners to make more informed decisions.
Shamsollah Asgari, Kourosh Shirani,
Volume 11, Issue 2 (8-2024)
Abstract
Gully erosion is one of the advanced forms of soil erosion, which needs to be analyzed and identified in order to protect the soil. In this research, according to the complex system of factors influencing the creation of ditch erosion, 23 factors were analyzed in the two famous Dempster-Schiffer models and the entropy model, and using Google Earth images and field visits, 331 ditch points were identified, recorded, and a ditch distribution map was prepared. Spatial data of gully erosion distribution were divided into two random training (70%) and experimental (30%) groups. In this research, two indicators of tolerance coefficient and variance inflation factor were used to check the collinearity test, and as a result, two indicators of waterway density and relative humidity index were removed and 21 factors were used in the modeling process. The output results of the layers, weighting and classification and integration in two Dempster-Schiffer and entropy models are the extraction of the zoning map of the gully's erodibility sensitivity. and 30% of the calibration and validation of the models, the area under the ROC system performance characteristic curve and the area under the AUC diagram of the Dempster-Schiffer model with an explanation factor of 0.934 and the maximum entropy model with an explanation factor of 0.936, both models have an acceptable percentage of the area under the curve were that this issue shows the high performance of both models in the region. Among other results of statistical analysis, the prioritization of the impact of 21 factors in causing ditch erosion in the region was determined. The scientific results of the research can be promoted and taught, and from the practical point of view, the relevant executive body to control ditch erosion can take the necessary measures using the results of this research.