Search published articles


Showing 40 results for Climate

Mr. Erfan Naseri, Mr. Alireza Massah Bavani, Mr. Tofigh Sadi,
Volume 8, Issue 1 (5-2021)
Abstract


 Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains)
Abstract
One of the most important challenges for the human communities is Global Warming. This vital problem affected by Climate Change and corresponding effects. Thus this article attempted to assess the trend of real climate variables from synoptic stations. Daily precipitation, Daily Maximum Temperature and Daily Minimum Temperature have been selected for the Hillsides of Southern Central Alborz Mountains and have been tried to prove climate change and attribute the related forcing such as Greenhouse Gases. The Capital of Iran located in this region and this region has a special occasion, because at least a quarter of Iranian population live in these provinces (Tehran and Alborz) and four big dams located in this region. The Intergovernmental Panel on Climate Change’s defines ‘‘detection’’ of climate change as ‘‘the process of demonstrating that climate or a system affected by climate has changed in some defined statistical sense, without providing a reason for that change,’’ while ‘‘attribution’’ is defined as the process of evaluating the relative contribution of multiple causal factors to a change or event with an assignment of statistical confidence. Regional D&A studies provide an insight to local changes in natural systems and may help in planning and developing robust adaptation strategies. Previously, formal detection and attribution have been used to investigate the nature of changes in various climatological variables such as air temperature, surface specific humidity, ocean heat, sea level pressure, continental river runoff, global land precipitation and precipitation extremes. However, almost all of these studies deal with climatological or meteorological variables at the global or continental scale. Studies which have attempted to formally detect and attribute regional hydrometeorological changes to anthropogenic effects are rare. Regional-scale D&A analysis is more difficult because the detection of anthropogenic ‘‘signal’’ in natural internal climate variability ‘‘noise’’ is determined by the signal-to-noise ratio which is proportional to the spatial scale of analysis, especially for real observation data. For overcoming this issue interpolation method (IDW) has been applied to transfer point data to area (gridded) data. The point data gathered from 3 synoptic stations (Mehrabad, Karaj and Abali). Then transferred data have been Standard and Averaged for 3 years. Standard values of annual and seasonal amounts have been computed for individual stations as the average of the standard values of annual and seasonal amounts available 3 years anomaly values. Estimates of annual or seasonal variables anomalies were obtained by averaging the annual or seasonal by 12 or 3 respectively. For detecting and attributing 3 simulation signals (ALL, GHG and NAT) selected from Canadian General Circulation Model (CanESM2.0) of CMIP5 archive subcategories. Space–time series of observations and model simulated variables responses to external forcings (the “signals”) first have been compared qualitatively by computing correlation coefficients between observations and simulations. This simple method does not optimize the signal-to-noise ratio nor provide a quantitative measure of the magnitude of model simulated response relative to that in the observations. Nevertheless, it provides an easy-to-understand view of the similarity between observed and model-simulated changes. Optimal detection and attribution analysis very often requires a reduction of dimensionality. This is typically done by projecting both observations and simulations onto leading empirical orthogonal functions (EOFs) of internal variability and using the residual consistency check to determine the number of EOFs to be retained in the analysis. To produce internal variability for residual test and consistency, Pi-Ctrl Runs have been used. The Preindustrial simulations have high volume, this subject complicates calculation therefore Experimental Orthogonal Functions (EOFs) have been used to reduce the Pi-Ctrl simulations volume and provide situations for Optimal Fingerprint. Optimal Fingerprint method is the best method for Detection and Attribution. Results have been obtained by this manner indicated Global Warming affected the study region by affecting on mean cumulative winter precipitation (0.88), mean spring minimum temperature (0.78) and mean summer maximum temperature (0.76). These numbers are the beta coefficient that named scaling factor. Although the scaling factor for the mean spring minimum temperature affected from GHG signal obtained (0.73), but the GHG forcing alone didn’t have a significant effect on the precipitation and maximum temperature. Also, NAT signal didn’t have significant effect on the region alone, too. The obtained results of this study indicate the earlier studies, such as Wan et al, 2014.
 
Key words: Climate change, Detection, Attribution, Optimal Fingerprint, Hillsides of Central Southern Alborz Mountains
 
Mr Mohammad Hossein Aalinejad, Pro Saeed Jahanbakhsh Asl, Pro Ali Mohammad Khorshiddoust,
Volume 8, Issue 3 (12-2021)
Abstract

Investigation of Temperature and Precipitation Changes in the Seymarreh Basin by Using CMIP5 Series Climate Models
 
Abstract
Panel reports on climate change suggest that climate change around the world is most likely due to human factors. Temperature and precipitation are two important parameters in the climate of a region whose variations and fluctuations affect different areas such as agriculture, energy, tourism and so on. Seymareh basin is one of the most significant sub-basins of Karkheh. The purpose of this study is to predict the impact of climate change on precipitation and temperature of the Seymareh Basin in 2021-2040 period. These effects were analyzed at selected stations with uncertainties related to atmospheric general circulation models (GCMs) of CMIP5 models under two scenarios of RCP45 and RCP85 through LARS-WG statistical model. Then the uncertainties of the models and scenarios were investigated by comparing the monthly outputs of the models by the coefficients of determination coefficient (R2) in the forthcoming period (2021-2040) with the base period (1980–2010). The root mean square error (RMSE) calculations presented the best model and scenarios for generating future temperature and precipitation data.            
The Seymareh catchment is the largest and the main Karkheh sub-basin that covers parts of Kermanshah, Lorestan and Ilam provinces. The length of the largest river at the basin level to the site of the Seymareh Reservoir Dam is approximately 475 km, and the area of the basin is 26,700 km2. Geographic coordinates of the basin are from 33° 16 ́ 03 ̋to 34°59 ́ 29 ̋north latitudes and 46°6 ́9 ̋to ̋ 5 ́ 0 ° 49 Eastern longitudes, minimum basin height 698 m at the dam outlet and its maximum height 3,638 m. It is on the western highlands of Borujerd.
The information used in this study was obtained from the Meteorological Organization of the country. For this study, three synoptic stations of Kermanshah, Hamadan and Khorramabad, which had the highest statistical records and had appropriate distribution at basin level, were used. These data included daily and monthly temperature and precipitation information, and sunshine hours.
The LARS-WG fine-scale exponential model was proposed by Rasko et al., Semnoff and Barrow (1981). We used daily data at stations under current and future weather conditions. In order to select the best GCM model from the models mentioned above, minimum temperature, maximum temperature, precipitation and sunshine data were entered daily in the base period (1980–2010) and data were generated for five models under two scenarios of RCP45 and RCP85 for the period 2040–2021. The data were generated in 100 random series and the mean of required variables (minimum temperature, maximum temperature and rainfall) were extracted monthly in the period 2021-2040. Then, root mean square error (RMSE) and determination coefficient (R2) were used to evaluate the performance of the models and compare the results.
To ensure the models' ability to generate data in the coming period, computational data from the model and observational data at the stations under study should have been compared. The capability of the LARS-WG model in modeling the minimum temperature, maximum temperature, and radiation at the stations under study was completely consistent with the observed data. The model's ability to exemplify rainfall was also acceptable, however the highest modeling error was related to March rainfall.
By comparing the observed and produced data including monthly average precipitation, minimum and maximum temperatures through five mentioned models with their indices, the best model and scenario for future fabrication were determined. The results of this comparison showed that among the available models, HADGEM2-ES model under RCP 4.5 scenario had the best result for precipitation and HADGEM2-ES under RCP 8.5 scenario predicted the best result for maximum temperature. Determining the best model, precipitation data, minimum temperature and maximum temperature produced in the selected models and scenarios were analyzed to investigate the climate change temperature and precipitation for the future period.
The results of this study indicated that due to the wide range of output variations of different models and scenarios, by not taking into account the uncertainties of the models and scenarios can have a great impact on the results of the studies. It was also found in this study that the LARS-WG exponential model was capable of modeling precipitation data and baseline temperature in the study area, so that the radiation data, minimum and maximum temperatures were completely consistent with the data.
The observations are consistent and the models' ability to predict rainfall is very good and acceptable manner. In investigating the uncertainties caused by atmospheric general circulation models and existing scenarios, the best model to predict precipitation in the study area is HADGEM2-ES model under RCP 8.5 scenario, the best model for temperature estimation model HADGEM2-ES under RCP scenario No. 4.5.
The overall results of this study revealed that the average precipitation in the basin will decrease by 4.5% on average, while the minimum temperature will be 1.5° C and the maximum temperature will be 2.17° C. The highest increase will be due to the warmer months of the year. Notable are the disruptions of rainfall distribution and the high temperatures will have significantly negative consequences than rainfall reduction.
 
  • : Climate Change, Climate Scenarios, Uncertainty, LARS-WG, Seymareh.
 
 

Zahra Arabi, Ayub Badragh Nejad,
Volume 8, Issue 4 (3-2022)
Abstract

Introduction
Drought is one of the environmental disasters that is very frequent in arid and semi-arid regions of the country. Rainfall defects have different effects on groundwater, soil moisture, and river flow. Meteorological drought indices are calculated directly from meteorological data such as rainfall and will not be useful in monitoring drought if the data are missing. Therefore remote sensing technique can be a useful tool in drought measurement. Drought is a recognized environmental disaster and has social, economic, and environmental impacts. Shortage of rainfall in a region for long periods of time is known as drought. Drought and rainfall are affecting water and agricultural resources in each region.
Materials & Methods
The present study is a descriptive-analytic one with emphasis on quantitative methods due to the nature of the problem and the subject under study. In this study, the Tera Sensor Modis satellite images from 2000 and 2017 were used to verify the existence of wet and drought phenomena. In the next step, by examining the rain gauge and synoptic data of the existing stations and using a standardized precipitation index model of three months (May, June and April), the sample was selected. Next, we compared the temperature status indices (TCIs) and vegetation health indices (VHIs) in these three months to determine the differences in these indices over the three months. Modi satellite Tera satellite was used to find out the vegetation status in the study area. Subsequently, using the condition set for the NDVI layer, the vegetation-free areas were separated from the vegetated areas. Experimental method was used to determine the threshold value of this index. For this purpose, different thresholds were tested, with the optimum value of 1 being positive. NDVI is less than 1 plant-free positive and more than vegetation-free. MODIS spectral sensing images for ground surface temperature variables, with a spatial resolution of 1 km, including bands 31 (bandwidth 1080/1180 central bandwidth / 11.017 spatial resolution 1000 m) and 32 bands- 770/11 Central Wavelength Band 032/12 Spatial Resolution Power (1000 m) Selected for months that are almost cloudless. All images have been downloaded from the SearchEarthData site and have been edited. The total rainfall of June, April, and May for the 20-year period was provided by the Meteorological Organization of Iran. ARC GIS software and geostatistical methods were used to process the Excel data. Also, to estimate the correlation between the data Pearson's correlation coefficient was used.
Results & Discussion
The standardized precipitation index is a powerful tool in analyzing rainfall data. The purpose of this study was to compare the relationship between remote sensing indices and meteorological drought indices and determine the efficiency of remote sensing indices in drought monitoring. Correlation between variables with SPI index was evaluated and calculated. The results of the indicators are different, so a criterion should be used to evaluate the performance of these indicators. SPI index on quarterly time scale (correlated with vegetation) as the preferred criterion Selected. According to the results of correlations, the TCI index with the SPI index had a strong correlation with other indices. In the short run, this index has the highest correlation with thermal indices at 1% level. The correlation between meteorological drought index and plant water content and thermal indices increases with increasing time interval. Positive correlation between vegetation indices and plant water content with meteorological drought indices indicates that trend of changes is in line. Therefore, the TCI index makes drought more accurate and is a better method for estimating drought.
Conclusion
The results showed that among the surveyed fishes, the highest drought trend was observed in the eastern part of these provinces and covered more than 50% of the area. The trend of changes in this slope was statistically significant. According to the results of correlations, the TCI index with the SPI index had a strong correlation with other indices. It can also be concluded that the Modis images and the processed indices along with the climate indices have the potential for drought monitoring. Using maps derived from drought indices can help improve drought management programs and play a significant role in mitigating drought effects.
Keywords
Drought, remote sensing, correlation, climate index.
 

- Ahmad Hosseini, - Mostafa Khoshnevis, - Shamsollah Asgari,
Volume 8, Issue 4 (3-2022)
Abstract

.
 Introduction
Old trees are important and key elements of forest sites and are of great value in terms of forest management, reforestation, silviculture and ecology. Although old trees constitute a small percentage of forest trees, they account for a large share of forest carbon reserve and play a vital role in carbon storage. Understanding the how geographical and site distribution of these trees across the forest is essential to obtain information for forest restoration management. Therefore, this study was carried out to investigate the geographical and site characteristics of old trees of Wing nut, Ash, Hackberry, Sycamore, Elm, Olive, Cypress and Fig in Ilam province.
 
Materials and methods
After querying the villagers and local people and conducting numerous forest surveys, the old trees were identified and selected on the basis of the diameter of the breast. Then their geographical characteristics including city, district, village, geographical coordinates and site conditions including slope, aspect, altitude, soil depth, climate and proximity to water source were measured or recorded.

Results and discussion
The results showed that in terms of geographically distribution, the identified old trees have located in Ilam, Mehran, Malekshahi, Badreh and Dehloran cities. Topographically, the old trees of Wing nut, Elm, Ash and Fig were located in the 0-10% slope class, Hackberry and sycamore in the 0-10% and 10-30% slope classes, olive in the 10-30% slope class and Cypress in the 40-70% slope class. The old trees of Wing nut, elm, Ash and Hackberry were located in the north aspect, fig, sycamore and Cypress in the south aspect and olive in the west and south aspects. The old trees of Wing nut, elm, Ash, Hackberry, Sycamore and Cypress were dispersed at altitude class of 1100–1250 m and olive and fig old trees were at altitude class of 1250–1400 m above sea level. Climatically, the old trees of Wing nut, elm, Ash and Hackberry were located in the very cold Mediterranean climate, Cypress trees and some sycamore trees in the cold Mediterranean climate, and fig, olive and some plantain trees were in the semiarid cold climate. In terms of access to water resources, old trees of Wing nut, elm, Ash, Sycamore, Hackberry and Fig were located on the bed or margin of river, old Cypress trees had no access to water resources and some olive trees were close to water resources. In terms of soil subsidence, old trees of Wing nut, elm, Hackberry, olive, and fig were mostly in soils with medium depths. Old ash and sycamore trees were present in shallow to medium depths and old cypress trees were present in shallower soils. Although the identified old trees were present in limited sites, their long-term and sustained presence in these sites indicates that sites conditions are favorable for their survival.

Conclusion
Therefore, it can be concluded that the presence of low slopes, suitable soil bed and access to water resources were desirable characteristics for stability and survival of the studied old trees in these sites. Due to the above-mentioned characteristics, ecologically similar sites can be found in the forests of the province and can be restored by seed of old and resistant trees.
Keywords: Site, Topography, Climate, Geography, Old trees, Ilam

 
Mr Alireza Sadeghinia, Mrs Somayeh Rafati, Mr Mehdi Sedaghat,
Volume 8, Issue 4 (3-2022)
Abstract

Introduction
Climate change is the greatest price society is paying for decades of environmental neglect. The impact of global warming is most visible in the rising threat of climate-related natural disasters. Globally, meteorological disasters more than doubled, from an average of forty-five events a year to almost 120 events a year (Vinod, 2017). Climate change refers to changes in the distributional properties of climate characteristics like temperature and precipitation that persist across decades (Field et al., 2014). Because precipitation is related to temperature, scientists often focus on changes in global temperature as an indicator of climate change. Valipour et al. (2021) reported the mean of monthly the global mean surface temperature (GMST) anomalies in 2000–2019 is 0.54 C higher than that in 1961–1990. Many studies have been done on climate change in Iran. These studies have mostly studied the mean and extreme temperature trends (Alijani et al., 2011; Masoudian and Darand, 2012). In general, the results of previous studies showed that the statistics of mean, maximum and minimum air temperature in most parts of the Iranian plateau have increased in recent decades. Also, the increase of minimum temperature is greater than maximum temperature.
A review of the research background shows that we need to understand more about regional climate change in Iran. Therefore, present study performs the climate change of 14 extreme temperature indices using multivariate statistical methods at the regional scale.

Data and methodology
Historical climate observations including daily maximum and minimum temperature were obtained from the Iranian Meteorology Organization for the period 1968 to 2017 at 39 stations. In this paper, 14 extreme temperature indices defined by ETCCDI were analyzed. The indices are as follows: (1) Annual maxima of daily maximum temperature (TXx); (2) Annual maxima of daily minimum temperature (TNx); (3) Annual minima of daily maximum temperature (TXn); (4) Annual minima of daily minimum temperature (TNn); (5) Cold nights (TN10p); (6) Cold days (TX10p); (7) Warm night (TN90p); (8) Warm day (TX90p); (9) Frost days (FD); (10) Icing days (ID); (11) Summer day (SU); (12) Tropical nights (TR); (13) The warm spell duration index (WSDI) and (14) the cold spell duration index (CSDI). The extreme temperature indices were extracted using R software environment, RclimDex extension. The Mann–Kendall Test and Sen’s Slope Method was employed to assess the trends in 14 extreme temperature indices. To identify homogeneous groups of stations with similar annual thermal regimes, Principal Component analysis (PCA) and Clustering (CL) was applied. Pearson correlation coefficient was used to investigate the relationship between height and trend slope.

Result
All the extreme temperature intensity indices (TXx, TNx, TXn, and TNn) showed increasing trends during 1968 to 2017. The increasing trends of TXx, TNx, TXn, and TNn were 0.2, 0.3, 0.44, and 0.5 ° C per decade, respectively. These results indicated that the extreme warm events increased and the extreme cold events decreased. The average of the extreme temperature frequency indices over Iran showed that the frequency of warm night (TN90p) and warm day (TX90p) significantly increased with a rate of 6.9 and 4.2 day per decade, respectively. Also, the frequency of cold night (TN10p) and cold day (TX10p) significantly fell with a decrease rate of 3.8 and 3.8 day per decade, respectively. The frequency of warm nights (TN90p) was higher than that of warm days (TX90p). The result indicated that the trend of nighttime extremes were stronger than those for daytime extremes. The average of frost days (FD) and icing days (ID) indices over Iran showed decreasing trends during 1968 to 2017 with rates of 3 and 1.1 d per decade, respectively. While, the averaged of summer days (SU) and tropical days (TR) indices over Iran showed increasing trends with rates of 4.4 and 6.4 day per decade, respectively. The warm spell duration index (WSDI) indices showed a clear increase, with a rate of 2.1 per decade. In contrast the cold spell duration index (CSDI) showed a significant decrease, with a rate of 1.7 per decade. In general, the cold indices displayed decreasing trends, whereas the warm indices displayed increasing trends over most of Iran. Pearson correlation coefficient between height and Sen’s Slope was estimated to be equal to -0.62 (p < 0.01). In general, the results of this study showed that there is a negative correlation between the elevation factor and the Sen’s Slope of warm extreme indices. That is, as the altitude decreases, the Sen’s Slope increases. Therefore, the stations located in low altitude have experienced stronger increasing trends than in high altitude. The area of ​​Iran was classified into four clusters using PCA and CL methods. Cluster 1 has experienced the strongest increasing trends. The average height of cluster 1 is 535 meters. Approximately 38% of the studied stations were located in cluster 1. Cluster 2 showed a moderate heating trends. 33% of the stations were located in cluster 2. Most of the stations of cluster 2 are located in the northwest and west of Iran. Cluster 3 showed a weak increasing trends compared to clusters 1 and 2. The stations of cluster 3 did not show a special geographical concentration and were scattered in all parts of Iran. 18% of the studied stations are located in cluster 3. The stations of Cluster 4, have experienced weak decreasing trends, which was different from the other three clusters

Conclusion
In this study we analyzed the climate change of extreme temperature indices in Iran. The result showed that the frequency of warm nights, warm days, summer days and tropical days increased. Also, the frequency of cold nights, cold days, Frost days and icing days decreased. The warm spell duration index showed a clear increase. In contrast the cold spell duration index showed a significant decrease. In general, the extreme warm events increased and the extreme cold events decreased over most of Iran. There is a negative correlation between the elevation factor and the Sen’s Slope of extreme warm indices (R = -0.62). Therefore, the stations located in low altitude have experienced stronger increasing trends than in high altitude. The area of ​​Iran was classified into four clusters using PCA and CL methods. Cluster 1 has experienced the strongest increasing trends. The average height of cluster 1 is 535 meters. Therefore, the most heating have occurred in Low-lying areas of Iran. Cluster 2 and Cluster 3 showed a moderate and weak heating trends, respectively. The stations of Cluster 4, have not experienced clear trends.

Key words: climate change; Extreme temperature; clustering; Iran



 
Mrs Fatemeh Falahati, Dr Bohlol Alijani, Dr Mohammad Saligheh,
Volume 8, Issue 4 (1-2021)
Abstract

In many areas, snow cover in the mountains is a major source of surface and underground water supply. Due to climate change and its effect on the time of melting ,it  is very important for environmental planning to predict the arrival time of water from snow melt to water consumption cycle. The purpose of this study is to investigate the volumetric changes and time distribution of snow flood flows in future by integrating remote sensing , GIS and climatic models.The studied area is the Upper Basin of Amir Kabir Dam, which is located on the southern slopes of Alborz Mountains. In this study, digital elevation maps (DEM) and GIS software were used to estimate parameters such as area, environment, main length, highest and lowest elevation points. In order to complete the snow cover data, MODIS products (MOD10A100) were extracted and the snow cover was extracted in the Upper Basin of Amir Kabir Dam. Next, runoff and snow melting models were simulated using SRM software. Calibration and validation of the model's acceptable performance were estimated. Then, in order to investigate the effects of climate change on the future of snowmelt runoff production in the basin of Amir Kabir Dam, the latest CMIP5 climatic models were used under four scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5. A survey on the relationship between snow cover area , temperature and precipitation was used to predict snow cover in the future. The increase in temperature in the autumn and winter season has led to a reduction in the shape of precipitation in the form of snow, and as a result, the amount of snow storm is reduced. The results show that the amount of runoff in the autumn and winter increases due to increased rainfall in the form of rain, and it will be  increased late winter and spring due to the increase in the amount of water resulting from snow melting. The results of this study are based on the increase of snow melt as a result of increased runoff volume, reduction of snow reserves and maximum flow transmission to earlier than normal conditions due to early snow melting due to temperature rise. Generally, in the future, the average annual runoff will be decreased about 1.1 cubic meters per second, and the average annual melting share will be about 13.9%
Ali Mohammad Khorshid Doust, Ali Panahi, Farahnaz Khorramabadi, Hossein Imanipour,
Volume 9, Issue 2 (9-2022)
Abstract

The effect of climatic parameters on vegetation distribution in central Iran
Introduction
Climate or climate reflects the daily weather conditions in a particular place for a long time. Most climatic elements are closely related to ecological factors, which is why the analysis of the relationship between climate and plant distribution patterns has been discussed in scientific and research circles for many years. And in recent years, scientists have been using a combination of climatic characteristics with other environmental factors to describe vegetation around the world. Climate change and atmosphere condition will change the content and composition of many plant communities.

The Study Area
The geographic coordinates of the studied area are between latitudes 29°32’ to 33°59’ and 51°27’ to 55°5’. The position of the selected provinces of central Iran compared to the neighboring provinces are shown in Figure 1 The annual data of 8 stations have been analyzed during the stations period determined by the National Meteorological Organization. The stations characteristics including latitude, longitude, elevation and specific statistical period are shown in Table 3.

Data and research methods
In this study, the role of temperature changes and relative humidity on vegetation in Central Iran has been investigated using statistical models of analysis of the main components and hierarchical clustering. This research is applied and its method is slightly analytical. In order to investigate the climatic fluctuations of the center of Iran with respect to urban green space, statistical data related to average temperature and relative humidity during the 32-year period (1986 to 2018) selected central stations of Iran to come and statistical deficiencies such as Data loss was performed by reconstructing differential equations using SPSS software. The criterion for selecting stations is the availability of long-term statistics. Using statistical methods and Geographic Information System (GIS), vegetation classification was performed for Central Iran. ArcGIS, Minitab, SPSS and EXCEL software are used in this research. After identifying the stations, climatic variables including temperature and relative humidity were selected from the data of 8 meteorological stations and were analyzed using the techniques mentioned above. Then, using statistical regression analysis, the impact (topography, average temperature and average relative humidity) on how to distribute and distribute vegetation was investigated. Kendall-man non parametric test was used to investigate changes in the vegetation index trend.

Results and discussion
Analysis of temporal changes in climatic parameters and NDVI index
The results show that the distribution of relative humidity in Abadeh and Kerman stations has decreased by 3% and the temperature distribution in these stations has increased by more than one percent. Relative humidity changes in Kashan and Sirjan stations have a weak decreasing trend, while the relative humidity distribution in Isfahan station has decreased by about 2%.The temperature distribution of Shiraz and Yazd stations increased by 3%, Abadeh station increased by 2% and also Isfahan and Kerman stations increased by 1%. The distribution of vegetation in Yazd and Khor Biyabank stations has decreased by one percent, while the growth of vegetation in Isfahan, Abadeh and Sirjan stations is increasing by less than one percent.

Distribution of NDVI vegetation index in Central Iran using cluster analysis
The stations are located in three distinct areas in terms of distribution of vegetation, each group having the same climatic characteristics in the distribution of similar vegetation. Based on this, three climatic zones in the study area can be identified.

Conclusion
The aim of this study was to investigate the effect of climatic parameters (average temperature and relative humidity) on the distribution of vegetation in Central Iran using comparison of statistical models; by examining the distribution and density of vegetation, eight factors were identified. Among the factors, the first and second factors, with 81.57% of the total vegetation variance, have played the most important role in determining the climatic diversity of Central Iran. In total, these eight factors have justified about 100% of the vegetation behavior in the area Also, according to the analysis of images of Modis satellite measuring satellites from the vegetation situation in the last 5 years, Central Iran, the value of NDVI index in Central Iran varies between 0.2 to 0.64, the northwestern parts of Fars province have the highest vegetation density and The central parts of Isfahan, especially Yazd, lack vegetation. Based on the results, altitude has a direct and significant relationship with temperature distribution in plants, especially in the study area. However, the height of Iran's central regions has affected the distribution of vegetation.

Keywords:  climatic parameters, vegetation distribution, central Iran

 
Dr. Homayoun Motiee, Mrs. Saba Ahrari,
Volume 9, Issue 2 (9-2022)
Abstract

Glaciers are one of the most important water resources in the world, which are heavily affected by global warming and climate change. This paper investigates the effects of global warming on the changes in the snow cover level of the Takht Suleiman region located in Mazandaran province during the warm months of the year through the past three decades using remote sensing. For this purpose, the images from June to August of the Landsat-5 and 8 satellites in the period of 1990 to 2021, as well as the data of the air temperature product of the ERA5 sensor were processed on the Google Earth Engine. In this research, NDSI index (Normalized Snow Cover Surface Index) was used to detect snow covered surfaces and the Mann-Kendall test was used to evaluate the trend of the data. The results of the overall accuracy and Kappa coefficient in the Google Earth Engine system show an overall accuracy of 94% and a Kappa coefficient of 89% in 2021, which shows the high compatibility of this method with real data.
The results obtained during the investigated period show an increase of about 1.5 degrees in temperature during the last three decades at a significant level of 95%. The snow and ice cover of the Takht Suleiman region in June month decreased from 127 square kilometers( in 1990) with a decrease of 82% to 22 square kilometers( in 2021). The trend of changes in the level of snow cover in June was analyzed with the Mann-Kendall test, which shows a decreasing trend at a significance level between 80 and 90%. In general, these results indicate an increase in temperature and a decrease in the level of this glacier during the statistical period studied, and the continuation of the gradual depletion of the glaciers of this region in the future is a serious threat to the downstream water source and the surrounding environment.

 
Mr Loghman Khodakarami, Dr Saeid Pourmanafi, Dr Alireza Soffianian, Dr Ali Lotfi,
Volume 9, Issue 2 (9-2022)
Abstract

Space-based quantification of anthropogenic CO2 emissions in an urban area using “bottom-up” method
(Case study: Isfahan Metropolitan)
Abstract
Increasing consumption of fossil fuels in urban areas emits enormous amounts of greenhouse gases into the atmosphere. Therefore, the study of carbon dioxide (CO2) emissions from urban areas has become an important research topic. The main purpose of this study is space-based quantification of carbon dioxide emissions driving from fossil fuel combustion in different source sectors in Isfahan. To achieve it, in the present study, the "bottom-up" method was used to quantify the carbon dioxide gas emission based on its production sources sectors. In this method, the amount of emission was measured distinctly for different sources of energy consumption and consequently the spatial distribution map the CO2 emission was generated. The results of this study revealed that the total amount of carbon dioxide emissions driving from fossil fuels is 13855525 tons per year in Isfahan. Separately stationary sectors of power plant, housing and commercial and mobile sources including road and railroad and existing agricultural machinery were responsible for emitting 50.61, 21.78, 17.18, 4.92, 4.37, and 1.14% of CO2, respectively. In conclusion, through applying the bottom-up method and CO2 emission distribution mapping based on different source sectors, mitigation measures can be applied more efficiently in urban planning.
Key words: Greenhouse gas (GHG), Fossil fuel combustion, Mobile and stationary source of energy consumption, climate change, Mitigation strategies
Mr Sayyed Mahmoud Hosseini Seddigh, Mr Masoud Jalali, Mr Hossein Asakereh,
Volume 9, Issue 3 (12-2022)
Abstract

The expansion of the pole toward the tropical belt is thought to be due to climate change caused by human activities, in particular the increase in greenhouse gases and land use change. The variability of the tropical belt width to higher latitudes indicates the expansion of the subtropical arid region, which indicates an increase in the frequency of drought in each hemisphere. In order to change the width of the tropical belt of the Northern Hemisphere in the middle offerings, indices of  precipitation minus evaporation, wind vector orbital component, stream function, tropopause surface temperature, OLR, and SLP have been used. Findings showed that the expansion of tropical belt latitude with stream function to higher latitudes with 1° to 3° latitude and the effect of Hadley circulation subsidence has increased the amplitude of evaporation minus precipitation has shown that the fraction of precipitation minus evaporation 1° to 3° latitude geographically increased. The subtropical jet has increased the movement of the upper branches of troposphere from the Hadley circulation by 2° to 4° latitude, which can have a negative effect on transient humidification systems as well as on the amount of precipitation. The extension of the pole towards the tropical belt, which is a consequence of climate change and hazards, will lead to the displacement of the pole towards the tropical side of the river, thus providing dry tropical belts to the pole; Also, the long-wave radiation of the earth's output has increased by 1° to 2° latitude and has caused an increase in heat in the upper troposphere, which has increased the dryness and slightly reduced the clouds in the upper troposphere and also caused the tropical belt to expand to higher latitudes. Has been. In general, the research findings showed that most tropical belt indicators have been increasing since 1979.
Dr Moslem Savari,
Volume 9, Issue 4 (3-2023)
Abstract

This regard, this research was conducted with the general purpose of designing a proposed sustainable food security model in drought conditions. The statistical population consisted of a number of food safety experts and agricultural experts. Therefore, for selecting the samples, targeted snowball sampling (chain referencing) was used. Sampling continued until data saturation, in the end, the number of participants in the study reached 31 . The research method was of qualitative type based on the data theory method of the foundation. The research data were collected using a deep interview and group discussion and analyzed with three open, axial and selective coding methods.
The results of the review of the requirements of sustainable food security in the form of data approach of the foundation consisted of 68 initial codes. Finally, in order to design a safety improvement model, the improvement of food security in drought conditions was subject to 8 requirements (managerial, technological, policy and supportive, infrastructure, cultural and empowerment requirements, Diversification, conservation, stabilization) and were inserted into the Strauss and Corbin model.
Access to adequate nutrition and nutritional health is one of the main pillars of development and is the basis for the future development of the country. According to studies on the role of nutrition in health, its efficiency and its relation with economic development has been confirmed. Also, access to adequate and desirable food is one of the earliest human rights, but various studies show that rural communities, which themselves are responsible for food security, face food insecurity, which is in a drought condition much more inferior to the situation. Because rural households are always at the forefront of drought vulnerability and, in the absence of risk mitigation systems, they quickly lose their resilience and go out of the agricultural sector. Therefore, measures must be taken to enable them to continue to operate in agriculture in drought conditions and to maintain the backbone of food security in the country.
Seyyed Mohammad Khademi Nosh Abadi, Dr Maryam Omidi Najaf Abadi, Dr Seyyed Mehdi Mirdamadi,
Volume 9, Issue 4 (3-2023)
Abstract

Industrial and agricultural activities in the world have led to an increase in the concentration of greenhouse gases such as carbon dioxide, methane and nitrogen oxide and have caused the earth's climate to become warmer. This phenomenon has caused climate change and has changed the thermal and rainfall patterns. Climate change in Iran in recent years has caused a decrease in rainfall and an increase in temperature and continuous droughts. Agricultural production in Iran has been affected by climate change and has faced a decrease in the production of crops such as wheat. Therefore, according to the government's policy of self-sufficiency in wheat production and the establishment of sustainable food security in the country, it is necessary to use climate smart agricultural technologies to sustainably increase agricultural productivity, Adapting and resilience of agriculture to climate change and reduction greenhouse gases emission from agriculture. The purpose of this study was to design a behavioral model for the use of climate smart agricultural technologies with an emphasis on motivation. The research method was quantitative, in terms of practical purpose, and research data was collected through a cross-sectional survey.The conceptual model was designed using the theory of planned behavior and the theory of norm activation. Bayesian structural equation modeling was used to test the model and hypotheses. The statistical population of this research was 800 wheat farmers of Nazarabad city, Alborz province. The sample size was calculated using Cochran formula 260 people, and stratified random sampling method with proportional assignment was determined as the sampling method. A researcher-made questionnaire was used to collect research data. The validity of the questionnaire was confirmed through agricultural extension and education experts, and its reliability was also confirmed through the pre-test and calculation of Cronbach's alpha coefficient. The findings of the research show that subjective norms, personal norms and perceived behavioral control related to the use of climate smart agricultural technologies have a significant effect on the intention to use these technologies. While the attitude towards the use of climate smart agricultural technologies do not have a significant effect on the intention to use these technologies. The variable of intention to use climate smart agricultural technologies also has a significant effect on the behavior of using these technologies.

Dr Seyed Keramat Hashemi Ana,
Volume 10, Issue 1 (5-2023)
Abstract


Abstract
Introduction and issue: In today's century when the effects of climate change on different sectors are undeniable, investigating and analyzing the behavior during dry spells is always of special importance and basic priority. On the other hand, the occurrence of extreme events such as precipitation can accelerate the occurrence of climate change. In Iran, rainfall is one of the basic variables for evaluating the potential availability of water resources, but its temporal and spatial distribution is very uneven. The change of dry Spells depending on precipitation always have different fluctuations in different seasons of the year. It seems that this is due to the inherent behavior of precipitation, which generally shows itself as an unstable and unruly variable. This feature causes changes and differences in the temporal and spatial distribution of precipitation in arid and semi-arid regions such as Iran. This inconsistency will face fundamental challenges to regularize dry spells on a seasonal and monthly scale. With a detailed understanding of the behavioral mechanism of dry spells, it is possible to know more precisely the climatic condition of different regions in order to plan in sectors such as; Water resources, agriculture, health, transportation and etc we able to do basic and preventive measures compatible with climate change. It is hoped that this research and related studies will be a positive step towards a more accurate understanding of the climate and its behavior in different seasons of the year.
Data and method: In order to investigate the seasonal behavior of the duration of dry spells, we used daily precipitation data for 44 synoptic stations of Iran and a 30-year statistical period (1988-2018). To reveal the behavior of dry spells, the precipitation data after validation and temporal integration were classified on a seasonal scale.
After the statistical integration of the data, dry spells related to precepitation were extracted and long-term periods lasting more than 20 days were the basis of the study. In the next step, to determine the seasonal weight of courses was used, the step-by-step evaluation method of Swara's fuzzy-numerical logic (SWARA). Thus, in the first step, the longest and most frequent periods are sorted based on relative importance. In the second step, the initial weights of the courses are determined, and in the third and fourth steps, the final and normalized weights of the courses in different seasons are determined, and unrealistic results are removed from the final analysis for proper explanation.
Findings and Results: The effectiveness and weight of each of the criteria with the Swara method in the fuzzy environment showed that in the western and northern regions of the country, winter and spring seasons and criteria such as reversibility and percentage of probability of occurrence have the most initial weight in explaining the periods. In the final explanation, these two season,s had a high weight. These two seasons explain more than 65% of the weight of courses in these regions. In the southern regions and parts of the center (Isfahan, East Fars and West Kerman), winter and autumn explain more than 71% of the weight of periods. Among the criteria explaining the weight of the courses, the reversibility criterion and the probability of occurrence have taken more than 55% of the weight. The northern and humid regions of the country vary in criteria from periods such as; Reversibility, continuity and probability of occurrence are more apparent and this indicates that the border of dry areas in the future of Iran's climate will move towards northern areas. It can be acknowledged that the behavior of long-term dry periods is more a function of two criteria of reversibility and probability of their occurrence. The weighting of the criteria affecting dry periods showed that the return period and the continuation of periods in the cold seasons of the year in dry areas have a more irregular behavior than in wet areas and have more weight in explaining the periods. By determining the weight of seasons in explaining dry periods, we can have better planning and management in related sectors such as water and agriculture.

Key words: dry spells, weighing, precipitation, climate, Swara method, Iran.
 
Mr Abolghasem Firoozi, Dr Akram Bemani, Dr Malihe Erfani,
Volume 10, Issue 1 (5-2023)
Abstract

Introduction:
The growth rate of urbanization during the recent decades of metropolises has had many destructive effects on the urban environment, among which we can mention the change of temperature of surfaces and local climates. The increase in the urban population, the rapid growth of industrialization and the increase in the concentration of pollutants in the lowest level of the atmosphere have affected the severity of the city's heat islands. Land surface temperature (LST) is a key variable to control the relationship between radiant, latent and sensible heat flux. Analyzing and understanding the dynamics of LST and identifying the relationship between it and changes of human origin is necessary for modeling and predicting environmental changes. The heat of urban surfaces is affected by various characteristics of urban surfaces such as color, surface roughness, humidity level, possibility of chemical compounds, etc. In addition, the changes between LST in a city and its surrounding area are due to surface changes, heat capacity and topography. Since the surface temperature regulates the temperature of the lower layers of the atmosphere, it can be considered as a weather indicator and an important factor in the urban environment. Changes in land use by changing the features of the surface cover such as the shape of the constructed areas, the amount of heat absorption, building materials, surface albedo and the amount of vegetation lead to changes in the temperature of the earth's surface. Barren lands with soil cover, on the contrary, increase the surface temperature of the earth. Climatic characteristics at the time of satellite image imaging also play a role in the extent and intensity of urban cold islands, so that satellite imaging in the middle of hot summer days shows urban cold islands better. The innovation of the research is in the large area of the investigated area, which includes eight urban areas, in order to examine the pattern of temperature changes on a wider level.

Materials and methods
Considering the rapid development of urban and industrial areas in the Ardakan-Yazd plain in recent decades, this study aims to investigate changes in the surface temperature pattern using Landsat 7 and 8 satellite images for both winter and summer seasons. It was done in 2002 and 2019. In addition, the relationship between land use/land cover and surface temperature was also investigated. Geometrical correction of satellite images was done using topographic map 1/25000 of Mapping Organization and atmospheric correction using FLAASH method in ENVI software. Algorithms used to obtain land surface temperature for Landsat 7 images were single-window method and for Landsat 8 images, the Landsat Science Office model was used. Land use/land cover layers related to the years 2002 and 2019 were used, and central statistical profiles and LST distribution were extracted for pasture, agricultural land, blown sands, industrial areas, rock outcrops and cities. In addition to examining temperature changes in different uses, it is also possible to compare over time.

Results and discussion
The results of this study showed that the area of cold islands and thermal islands in winter and summer of 2002 is not much different, so that in winter 10.8 percent and in summer 10.4 percent of the area were cold islands and thermal islands in winter 9.02. It was 8.5% of the region in summer, while this difference is huge in 2019. Thus, 9.4% of the area in winter and 12.1% in summer are covered by cold islands, and thermal islands are 8.3% in winter and 1.6% in summer. Changing land use and increasing the size of urban and industrial areas and reducing agricultural land is one of the main reasons for the increase in cold islands. The survey of land use/land cover changes between these years showed that the extent of urban areas increased from 22,045 to 23,714 hectares, and industrial areas also grew by about two times, from 4,615 in 2002 to 8,187 hectares in 2019. However, during this period, the area of agricultural land has decreased from 1161 hectares in 2002 to 793 hectares in 2019. Also, the results show that the percentage of heat islands is higher in winter than in summer. The main reason for this can be the much less vegetation covers in the winter than in the summer, because the vegetation cover acts as a moderator of the earth's surface temperature. Cold islands are formed in the built-up areas in the winter and summer. From 2002 to 2019, the extent of cold islands decreased in winter and increased in summer, while the extent of thermal islands decreased in winter and summer. Also, the results of the validation section of the single-window method and the model of the Landsat Science Office in calculating LST showed that for both summer and winter seasons, Landsat 8 has a higher accuracy than Landsat 7, and the LST estimation model is based on the exclusive method of this The Landsat series of satellites (Landsat Office of Science model) has a higher efficiency than the single-window method.

Conclusion
The results showed that cities play an important role in changes in the temperature pattern of the earth's surface, and the phenomenon of urban cold islands is not exclusive to big cities in hot, dry and semi-arid regions, but also occurs in medium-sized cities. The temperature variability of eight cities located in the Ardakan-Yazd plain with the land use/cover of the suburbs also showed that the cities are colder than the suburbs in both winter and summer seasons. This study showed the role of vegetation in hot and dry areas in reducing LST and also provided evidence for the change in the degraded state of pastures in this area.

Keywords: Urban climate, Land use, Land surface temperature, surface urban cool island (SUCI), surface urban heat islands (SUHI)


 
Mrs Halimeh Shahzaei, Dr Mohsen Hamidianpour, Dr Mahsa Farzaneh,
Volume 10, Issue 2 (9-2023)
Abstract

Spatial analysis of Iran's climate change from the point of view of sensible heat flux and latent heat flux by Bowen method

Halimeh Shahzaei; Ms.c student of Climatology, Departement of Physical Geography, University of Sistan and Baluchistan, Zahedan, Iran.
Mohsen Hamidianpour[1]; Associate Professor, Departement of Physical Geography, University of Sistan and Baluchistan, Zahedan, Iran.
 Mahsa Farzaneh; Ph.D Graduated. Climatology.



Abstract
Sensible heat flux and latent heat flux are among the variables that are closely related to temperature and humidity and show heat transfer on a surface. So, their changes can be considered related to changes in temperature and humidity. In this regard, the current research aims to analyze and reveal the climatic changes of Iran by examining the course of changes in sensible heat flux and latent heat and the ratio between the two. For this purpose, NCEP/NCAR reanalysis data including sensible and latent heat flux during the period 1948-2020 was used in Iran. Bowen coefficient was calculated from the ratio of these two heat fluxes. Interpolation methods were used for their spatio-temporal analysis. In addition, by using the non-parametric methods of Mann-Kendall and Shibsen, spatial and temporal changes were also investigated.  The first part of the results showed that, spatially, the Bowen coefficient is a function of latitude and roughness. And in terms of time, the lowest value corresponds to the month of January and the highest value corresponds to the month of July. The results of the second part show that the Bowen coefficient has a positive trend over time. Its upward trend indicates an increase in the dryness coefficient of the country. So that this situation can be seen in the positive trend and increase in temperature.
Keywords: climate change, Bowen coefficient, global warming, spatio-temporal analysis.
 
[1]. Autehr corespound:Email: mhamidianpour@gep.usb.ac.ir
 

Leila Ahadi, Hossein Asakereh, Younes Khosravi,
Volume 10, Issue 2 (9-2023)
Abstract

Simulation of Zanjan temperature trends based on climate scenarios and artificial neural network method

Abstract
Severe climate changes (and global warming) in recent years have led to changes in weather patterns and the emergence of climate anomalies in most parts of the world. The process of climate change, especially temperature changes, is one of the most important challenges in the field of earth sciences and environmental sciences. Any change in the temperature characteristics, as one of the important climatic elements of any region, causes a change in the climatic structure of that region. The summary of the investigated experimental models on climate change shows that if the concentration of greenhouse gases increases in the same way, the average temperature of the earth will increase dangerously in the near future. More than 70% of the world's CO2 emissions are attributed to cities. It is expected that with the continuation of the urbanization process, the amount of greenhouse gases will increase. According to the fifth report of the International Panel on Climate Change, the average global temperature has increased by 0.85 degrees Celsius during 1880-2012. Therefore, knowing the temperature changes and trends in environmental planning based on the climate knowledge of each point and region seems essential. For this reason, the present study simulates the daily temperature (minimum, maximum and average) of Zanjan until the year 2100.

Research Methods
The method of conducting the research is descriptive-analytical and the method of collecting data is library (documents). To check the temperature of Zanjan city, the minimum, maximum and average daily temperature data from Hamdeed station of Zanjan city during the period of 1961-2021 were used. The data of general atmospheric circulation model was used to simulate climate variables (minimum, average and maximum temperature) using artificial neural network and climate scenarios in future periods. The output variables in this study are minimum, maximum and average daily temperature. Therefore, three neural network models were selected. For model simulation, model inputs (independent variables) need to be selected from among 26 atmospheric variables. Therefore, two methods of progressive and step-by-step elimination were chosen to determine the inputs of the model. In these methods, climate variables that have the highest correlation with minimum, maximum and average daily temperature were selected. By using RCP2.6, RCP4.5 and RCP8.5 scenarios, variables were simulated until the year 2100. Markov chain model was used to check the possibility of occurrence of extreme temperatures of the simulated values.

results
According to the RCP2.6, RCP4.5 and RCP8.5 scenarios and the simulation made by the neural network model, it is possible that on average the minimum temperature will be 3.6 degrees Celsius, the average temperature will be 3.3 degrees Celsius and the maximum temperature will be 2.7 degrees Celsius. Celsius will rise. The monthly review of the simulated data for all scenarios and the observed data of the studied variables shows that the average minimum, average and maximum temperatures in January and February, which are the coldest months of the year, will increase the most and become warmer. While the average minimum temperature in August, the average temperature in April and the maximum temperature in October will have the least increase. According to the simulated seasonal temperature table based on all scenarios, it was found that the average minimum, average and maximum temperature observed with the maximum simulated conditions were 6.9, 5.5 and 5.4 respectively in the winter season, and 3.3 in the spring season. 4, 2.3 and 3, in the summer season it increases by 3.3, 3.4 and 1.4 and in the autumn season it increases by 4.6, 4.5 and zero degrees. The frequency of extreme temperatures observed in all three variables of minimum, average and maximum temperature for the 25th and 75th quartiles is less than the number of occurrences of extreme temperatures simulated in all three scenarios. Based on this, all three variables will increase and there will be fewer cold periods. An increase in night temperature and average temperature in winter season and maximum temperature in summer season will occur more than other seasons. The difference between day and night temperature will be less in autumn and summer. Also, all seasons, especially the summer season, will be hotter and the occurrence of extreme temperatures is increasing for the coming years.

Keywords: climate scenarios, simulation, extreme temperatures, artificial neural network, Zanjan



 
Seddigheh Farhood, Asadollah Khoorani, Abbas Eftekharian,
Volume 10, Issue 2 (9-2023)
Abstract

Introduction
In recent years, research on climate change has increased due to its economic and social importance and the damages of increasing extreme events. In most studies related to climate change, detecting potential trends in the long-term average of climate variables have been proposed, while studying the spatio-temporal variability of extreme events is also important. Expert Team on Climate Change Detection and Indices (ETCCDI) has proposed several climate indices for daily temperature and precipitation data in order to determine climate variability and changes based on R package.
Various methods have been presented to investigate changes and trends in precipitation and temperature time series, which are divided into two statistical categories, parametric and non-parametric. The most common non-parametric method is the Mann-Kendall trend test. One of the main issues of this research is the estimation of each index value in different return periods. The return period is the reverse of probability, and it is the number of years between the occurrence of two similar events (Kamri and Nouri, 2015). Accordingly, choosing the best probability distribution function is of particular importance in meteorology and hydrology.
Despite of the enormous previous studies, there is no comprehensive research on the estimation of extreme indices values for different return periods. Accordingly, this study focuses on two main goals: First, the changes in temperature and rainfall intensity are analyzed by analyzing the findings obtained from extreme climate indices (15 indices) and then (second) estimating the values of the indicators for three different return periods (50, 200 and 500 years).
Data and methods
In this research, the daily data of maximum, minimum and total annual precipitation of 49 synoptic stations for 1991-2020 were used to analyze 15 extreme indices of precipitation and temperature. Namely, FD, Number of frost days: Annual count of days when TN (daily minimum temperature) < 0oC; SU, Number of summer days: Annual count of days when TX (daily maximum temperature) > 25oC, ID, Number of icing days: Annual count of days when TX (daily maximum temperature) < 0oC; TXx, Monthly maximum value of daily maximum temperature; TNx, Monthly maximum value of daily minimum temperature; TXn, Monthly minimum value of daily maximum temperature; TNn, Monthly minimum value of daily minimum temperature; DTR, Daily temperature range: Monthly mean difference between TX and TN; Rx1day, Monthly maximum 1-day precipitation; Rx5day, Monthly maximum consecutive 5-day precipitation; SDII Simple precipitation intensity index; R10mm Annual count of days when PRCP≥ 10mm; R20mm Annual count of days when PRCP≥ 20mm; CDD. Maximum length of dry spell, maximum number of consecutive days with RR < 1mm; CWD. Maximum length of wet spell, maximum number of consecutive days with RR ≥ 1mm. Finally, the trends of indices were estimated using the non-parametric Mann-Kendall test and the values of these indicators were estimated for 50, 200 and 500 years return periods.
In order to calculate values of each indicator for a given return period, the annual time series and its probability of occurrence are estimated and the most appropriate statistical distribution function that can be fitted on the data is selected from among twelve functions. In this estimation, EASY-FIT (a hydrology software), which supports a higher range of distribution functions, is used. The intended significance level for 500, 200 and 50 years return periods were 0.998, 0.995 and 0.98, respectively. The functions used in this research include: Lognormal (3P), Lognormal, Normal, Log-Pearson 3, Gamma (3P), Gumbel, Pearson 5 (3P), Log-Gamma, Inv. Gaussian, Pearson 6 (4P), Pearson 6, Gamma. Kolmogorov–Smirnov test is used to assess the goodness of fit of the estimation from three return periods.
Results
The results indicate that while the trend of precipitation indices except for the Maximum length of dry spell (CDD) is decreasing, the trend of temperature indices was increasing, except for two indices of the days with daily maximum and minimum temperatures below zero degrees. From a spatial perspective, hot indices in the northwestern regions, cold indices in the southern half of the country shows an increasing trend, and the Caspian Sea, Oman Sea, Persian Gulf coastal regions, and the Zagros foothills are the most affected areas as a result of the increasing trends. Also, the index values were estimated for 50, 200 and 500 years return periods. As a result of the investigations, for temperature indices the north-west of the country has the highest values by different return periods. The increase in the values of R10, R20, RX1day and RX5day indices in the different return periods was more in the Zagros and Alborz mountain ranges, and the CWD, CDD and SDII indices have the highest values in the Caspian Sea and Persian Gulf Coastal areas.

Dr Sara Kiani, Dr Morad Kavyani, Dr Amirali Tavasoli,
Volume 10, Issue 4 (12-2023)
Abstract

The Namak Lake is situated between three provinces: Isfahan, Qom, and Semnan. However, the functioning of Namak Lake and its susceptibility to environmental, ecological, economic, and social influences not only affect the immediate surroundings but also impact other provinces. Naturally, a crisis in this lake can have negative effects on human communities and the residents of the surrounding areas in terms of environmental, economic, and social aspects. Therefore, the aim of this research is to identify the temporal-spatial changes in the salinity of Namak Lake and, subsequently, to investigate and analyze the effects of these changes on the environmental security of the surrounding regions. To achieve this goal, salt zones were identified using soil salinity indices, including the Normalized Difference Salinity Index (NDSI), Salinity Index 1 (SI1), Salinity Index 2 (SI2), and Brightness Index (BI), over a 30-year period (1992-2021) with five-year intervals. Then, using the maximum likelihood method, the salt zones were classified into four land cover types, including water zone, moist zone, salt zone, and other uses. The results of this study indicate that due to the reduction in water inflow into the lake as a result of dam construction in the upstream basin and the effects of climate change, the water zone, or seasonal lake, of Namak Lake has disappeared and the salt zone has expanded in this area. The most significant changes in the lake are related to the northwestern part of the lake, where major rivers such as Jajrood, Shur, Qarechai, and Qamaroud flow into this part of the lake, contributing to its drainage. Therefore, dam construction on these rivers has led to a downward trend in water flow into the lake. Furthermore, the results suggest that due to the absence of settlements and human communities near Namak Lake and the natural and climatic conditions of the region, it is not expected that environmental incidents that could have security and political implications will occur in the short term.
Sahar Afiati, Bohloul Alijani, Sayyed Mohammad Hosseini,
Volume 11, Issue 1 (5-2024)
Abstract

Cold and frost are one of the climatic hazards that cause damage to various activities every year. Climate change, on the other hand, causes spatial and temporal changes in glaciation. The purpose of this study is to analyze the temporal-spatial changes and predict the future of glaciers in Hamadan province. CanESM2 model was used to predict the minimum daily temperature in the province. Data mining of general circulation models was Downscaling using LARS-WG model. The above parameters were simulated for a period of 30 years (2050-2021) under three scenarios RCP2.6, RCP4.5 and RCP8.5 for selected stations. The results of the monthly minimum temperature survey in the study stations of the province showed that the minimum temperature in the period (2050-2021) in all studied stations according to all three scenarios will increase in all months of the year compared to the base period. The average minimum temperature of the province is equal to 2.5 degrees Celsius, which in the coming decades based on the scenarios of RCP2.6, RCP4.5 and RCP8.5 will reach 6, 6.2 and 6.3 degrees Celsius, respectively, which is the highest The changes are related to Nojeh station and the lowest is related to Hamedan. The spatial distribution of the beginning and end of freezing in the future period indicates that freezing in the northeastern and northern parts of the province starts earlier and ends later than in other parts of the province, while in the southern parts of the province it starts later and ends earlier. The results of examining the changes in the onset of frost in the next decade compared to the base period showed that in all stations studied the onset of frost will decrease between 3 to 11 days.
 
Ms Vahideh Sayad, Doctor Bohloul Alijani, Doctor Zahra Hejazizadeh,
Volume 11, Issue 2 (8-2024)
Abstract

Iran is a country with low rainfall and high-intensity rainfall that is affected by various synoptic systems, the most important of these systems is Sudan low pressure, Therefore, recognizing the low pressures of the Sudan region is of particular importance, The purpose of this study is to gather a complete and comprehensive knowledge of the set of studies conducted about this low pressure, structure and formation and its effects on the surrounding climate. The present study was conducted using the library method and a search for authoritative scientific and research sources in connection with research on low pressure in Sudan and no data processing was performed in it. Thus, it has studied and analyzed the temporal and spatial changes of Sudan's low pressure over several years and its effect on the climate of the surrounding areas, especially Iran. In general, the results of this study can be divided into several categories, including studies on the recognition and study of Sudan low pressure, its structure and formation over time, pressure patterns affecting it at different atmospheric levels, and its effects on the climate of surrounding areas, especially Iran. Has been studied, The effect of this low pressure on seasonal and spring rainfall in Iran, snow and hail, floods, thunderstorms and also the effect of remote connection patterns on this low-pressure system have been studied, and finally, the analysis of these findings has been studied. It can be concluded that the Sudanese low-pressure system is a Low-pressure reverse in the region of Northeast Africa and southwest of the Middle East, which is strengthened and displaced in the upper levels of the Mediterranean and Subtropical jet stream and in the lower surface moisture injection from the Arabian Sea and Oman through high pressure. Saudi Arabia is inwardly the cause of severe instability in Iran and a major cause of heavy rainfall in various parts of the country.

Page 2 from 2     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb