Showing 74 results for Ara
Zynab Dolatshahi, Mehry Akbari, Bohloul Alijani, Darioush Yarahmadi, Meysam Toulabi Nejad,
Volume 10, Issue 3 (9-2023)
Abstract
This study was aimed at examining the types of inversion and their severity using the thermodynamic indices of the atmosphere such as SI, LI, KI and TT at Bandar Abbas Station for 2010-2020. In this study, Radioosvand data at the Bandar Abbas Station was obtained and used from the University of Wioming for the last 11 years (3.5 local) during the last 11 years (2010 to 2020). The results of the analysis showed that the average number of inversion phenomenon in Bandar Abbas was 501 cases per year, as in some days several types of inversion were observed at different altitude. Of these inversion, about 31.6 % are related to radiation temperature inversion, 4.3 % front, and another 64.1 % for subsidence inversion. Due to the air session underneath, the share of subsidence inversions is more than other types of inversion. In the meantime, the most severe inversion of subsidence was 1354 and the weakest inversions were with 29 cases and fronts. In general, the long -term average intensity coefficient of inversion of Bandar Abbas station with a coefficient of 0.062 indicates that the intensity of the city's inversion is mostly extremely severe, which can be very destructive effects both environmentally and physical health in the city's residents. Bandar Abbas follow. The correlation between the inversion elements also showed that by reducing the thickness of the inversion layer, the intensity of temperature inversion also increased.
Nazanin Salimi , Marzban Faramarzi, Dr Mohsen Tavakoli, Dr Hasan Fathizad,
Volume 10, Issue 3 (9-2023)
Abstract
In recent years, groundwater discharge is more than recharge, resulting in a drop-down in groundwater levels. Rangeland and forest are considered the main recharge areas of groundwater, while the most uses of these resources are done in agricultural areas. The main goal of this research is to use machine learning algorithms including random forest and Shannon's entropy function to model groundwater resources in a semi-arid rangeland in western Iran. Therefore, the layers of slope degree, slope aspect, elevation, distance from the fault, the shape of the slope, distance from the waterway, distance from the road, rainfall, lithology, and land use were prepared. After determining the weight of the parameters using Shannon's entropy function and then determining their classes, the final map of the areas with the potential of groundwater resources was modeled from the combination of the weight of the parameters and their classes. In addition, R 3.5.1 software and the randomForest package were used to run the random forest (RF) model. In this research, k-fold cross-validation was used to validate the models. Moreover, the statistical indices of MAE, RMSE, and R2 were used to evaluate the efficiency of the RF model and Shannon's entropy for finding the potential of underground water resources. The results showed that the RF model with accuracy (RMSE: 3.41, MAE: 2.85, R² = 0.825) has higher accuracy than Shannon's entropy model with accuracy (R² = 0.727, RMSE: 4.36, MAE: 3.34). The findings of the random forest model showed that most of the studied area has medium potential (26954.2 ha) and a very small area (205.61 ha) has no groundwater potential. On the other hand, the results of Shannon's entropy model showed that most of the studied area has medium potential (24633.05 ha) and a very small area (1502.1 ha) has no groundwater potential.
Nabi Mohamadi, Behrouz Sari Saraf, Hashen Rostamzadeh,
Volume 10, Issue 3 (9-2023)
Abstract
Nowadays, due to global warming, drought and the occurrence of cold periods and heat stress, the study of climatic variables is very important. Therefore, in this research, the long-term forecast of temperature changes in northwest Iran in the base period (1985-2014) and three periods of the near future (2021-2050), the medium future (2051-2080) and the distant future (2100- 2081) was paid. For this purpose, 2 extreme temperature indices including Warm spells duration index (WSDI) and cold spells duration index (CSDI) and Maan-Kendall trend test were used to check the changes. To predict the changes of the profiles in the future period after evaluating 7 general circulation models (GCMs) from the sixth report model series (CMIP6) from two optimal models under three socio-economic forcing scenarios including SSP1-2.6, SSP3-7.0 and SSP5-8.5 was used. The spatial distribution of the trend of changes in the Warm spells duration index (WSDI) in the base period showed that its maximum core is located in the south and southwest of the region, and its amount decreases by moving towards the north and northeast. Spatial changes of the Cold spells duration index (CSDI) are characterized by its maximum cores in the western regions and around Lake Urmia and minimum cores in the central and northern regions of the study area. According to the results, the average Warm spells duration index (WSDI) and of the Cold spells duration index (CSDI) are equal to 5.53 and 3.80 days per year, respectively, and the maximum and minimum Warm spells duration index (WSDI) are 1.8 and 2.7 days, respectively Piranshahr and Parsabad stations and the maximum and minimum and the Cold spells duration index (CSDI) are also 5.7 and 1.32 days corresponding to Zarineh and Marivan stations. Examining the trend of changes also showed that in most stations, the WSDI index has an increasing trend, and this trend has become significant in some stations, but the CSDI index has a decreasing trend and is not significant in any of the stations. The evaluation of different models with different error measurement indices also showed that MRI-ESM2-0 and MPI-ESM1-2-L models have the best performance in simulating temperature extreme in the studied area. The distribution of changes in the future period also showed that the WSDI will increase in most stations and based on all three scenarios, especially the SSP5-8.5 scenario, but the CSDI trend will decrease in most stations and based on the SSP3-7.0 and SSP5-8.5 scenarios will be significant.
Hayedeh Ara, Zahra Gohari, Hadi Memarian,
Volume 10, Issue 3 (9-2023)
Abstract
Introduction
Desertification is one of the major environmental, socio-economic problems in many countries of the world (Breckle, et.al., 2001). Desertification is actually called land degradation in dry, semi-arid and semi-humid areas, the effects of human activities being one of the most important factors (David and Nicholas, 1994). Sand areas are one of the desert landforms, whose progress and development can threaten infrastructure facilities. The timely and correct identification of the changes in the earth's surface creates a basis for a better understanding of the connections and interactions between humans and natural phenomena for better management of resources. To identify land cover changes, it is possible to use multi-temporal data and quantitative analysis of these data at different times (Lu, et.al., 2004), therefore, one of the accurate management tools that causes the application of management based on current knowledge, these studies Monitoring is done using the mentioned data. The use of satellite data and ground information in such studies has caused many temporal and spatial changes of phenomena to be well depicted, which can be beneficial in better understanding and interaction with the environment and ultimately its sustainable management and development. To obtain and extract basic information, the best tool is to use telemetry technologies, which by using satellite data, in addition to reducing costs, increases accuracy and speed, and its importance is increasing day by day in the direction of sustainable development (Alavi Panah, 1385). Since field studies in the field of spatial changes of sandy areas of this city are difficult and expensive to repeat, facilities such as simulating these areas with expert algorithms and artificial intelligence can be used to investigate and monitor critical areas at regular intervals. Accurate and economically appropriate. Therefore, in this research, with the aim of investigating the effectiveness of these models in the periodic changes of the sandy plains of Ferkhes plain, two algorithms, perceptron neural network and random forest, were chosen, and the reason for choosing these models is the ability to model according to the existing uncertainties, interference Fewer users and insensitivity of the model to how the data is distributed.
Materials and Methods
The progress and development of the sandy areas of the Fern Plain depends on three factors, climatic, environmental and human. Therefore, the input variables to the expert and artificial intelligence models were chosen to cover these three factors. Therefore, factors such as drought, the number of dusty days, as well as vegetation index were entered into the model as dynamic variables, and environmental factors such as soil, elevation and altitude, geology, slope and direction were entered into the model as static variables. The statistical period investigated for the changes of wind erosion zones was considered to be 15 years from 2000 to 2015, based on this time base, qualitatively homogeneous and reconstructed meteorological data and images A satellite was selected and processed in 5-year periods (2000, 2005, 2010 and 2015). Modeling of the changes of sandy areas was done using two algorithms of perceptron neural network and random forest in MATLAB software environment. To choose the best neural network structure, a large number of neural networks with different structures were designed and evaluated. These neural networks were built and implemented by changing adjustable parameters (including transfer function, learning rule, number of middle layer, number of neurons of middle layer, number of patterns). One of the most common types of neural networks is multilayer perceptron (MLP). This network consists of an input layer, one or more hidden layers and an output. MLP can be trained by a back propagation algorithm. Typically, MLP is organized as a set of interconnected layers of input, hidden, and output artificial. The accuracy of these networks was checked by the statistical criteria calculated in the test stage, and finally the network that had the closest result to the reality was selected as the main network. The main active function used in this research is sigmoid, which is a logistic function. Then by comparing the network output and the actual output, the error value is calculated, this error is returned in the form of back propagation (BP) in the network to reset the connecting weights of the nodes (Chang and Liao, 2012). Other evaluation indices MSE, RMSE and R were used as network performance criteria in training and validation. The selection of Fern plain as a study area is due to the high potential of this area in the advancement of sand areas, for this purpose, 8 effective factors in the development of these areas were investigated. These factors were entered into the model in the form of three dynamic indices and five static indices.
Results and Discussion
In evaluating the results of modeling algorithms, dynamic variables in all periods were introduced as the most important factors in the occurrence of wind erosion and the advancement of sand areas. The diagram of the importance of predictor variables is presented in Figure 7. The results show that the vegetation cover index ranks first in all periods, the drought index ranks second in 2000 and 2015, and the dust days index ranks third in these two years. Meanwhile, in 2005 and 2010, the dust index and drought index ranked second and third respectively. Among the static variables used in this research, the height digital model variable was ranked fourth in 2000 and 2010, and in 2005 and 2015, geological and soil variables were important. In almost all studied periods, the direction factor is less important than other factors, which can be removed from the set of variables required for modeling to predict sand areas.
Sediqeh Mozaffari Qarah Bolagh, Brhrooz Mozaffari Qarah Bolagh, Mehdi Cheraghi,
Volume 10, Issue 3 (9-2023)
Abstract
Providing food to achieve food security is considered one of the important goals of development in all countries, reducing food insecurity is considered an important political and social achievement for governments. One of the effects of food insecurity in rural areas is the number of patients and deaths caused by the corona epidemic. In this regard, the current research seeks to answer the following questions: What is the level of food insecurity in the studied villages? And what effect does food insecurity have on the spatial distribution of corona patients and deaths? The type of research is applied and descriptive-analytical in nature. The statistical population of this research is all the villages in the central part of Zanjan city, which were surveyed in full. The method of collecting information is in the form of a library and the method of data analysis is in the form of descriptive statistics and spatial analysis. The findings of the research show that the average food insecurity of the studied villages is equal to 36.08%, the highest level of food insecurity is related to Taham district with 40.76% and the lowest level of food insecurity is related to Mirizat district. In order to analyze the effects of food insecurity on the mortality caused by Corona, geographic weighted regression has been used, based on the results obtained from this spatial analysis tool, the width is equal to 0.172, the remaining squares are equal to 2836, the effective number is equal to 16.86, Sigma is equal to 5.64 and the coefficient of determination, which measures the degree of linear relationship between two variables, has been calculated as equal to 0.72, so it can be said that with the increase in food insecurity, the death rate due to Corona will also increase.
Parastou Darouei , Parviz Zeaiean, Farhad Azizpour, Vahid Riahi,
Volume 10, Issue 3 (9-2023)
Abstract
Introduction
Agricultural activities, as a foundation of growth and development and part of the rural development process, guarantee the economic life of many villages in the country. However, in recent years, other products' water scarcity and resource limitations have affected these activities. This issue has severely challenged the sustainability and life of rural settlements.
In this regard, organizing and developing an optimal cropping pattern is necessary to achieve the goals of sustainable agricultural and rural development in Iran. To achieve this goal, the cultivation of crops must be commensurate with the capabilities of production resources, especially water resources.
Therefore, determining the appropriate spatial distribution of agricultural lands for the cultivation of various crops is one of the primary foundations for implementing optimal cropping pattern. Accordingly, the present study seeks to identify suitable spatial zoning for wheat and barley cultivation as the main crops in agricultural lands in traditional Lenjanat regions, which are exposed to a growing water crisis.
Data and Methodology
According to the main purpose of the research, the data obtained from spatial distribution maps of current cropping patterns and spatial distribution of suitable lands for crop cultivation.
This study prepared the suitability maps of the major agricultural products at a distance of 10 km on both sides of Zayandeh Rud River in Lenjanat region using multi-criteria decision-making methods.
Thus, the agronomic-ecological needs of the two major crops in the area (wheat and barley) were determined, and a standard map for each crop was classified using ArcGIS software. Then, the digital layers were combined by allocating the weight obtained from the Analytical Hierarchy Process and the Simple Additive Weighting method. Finally, talent assessment and land zoning was performed in four categories from unsuitable to very suitable for cultivating wheat and barley crops. Using the analytical hierarchy process method and experts' opinions led to high accuracy results.
Results and Discussion
The results of the land suitability map showed that 90.6% of the agricultural lands in the study area are very suitable and relatively suitable for the cultivation of the wheat crop. The northern and eastern regions, located in Falavarjan county and the north part of Mobarakeh county, are the most suitable areas for wheat cultivation. As we move from the north and east to the west of the study area, the capability areas for wheat cultivation decrease. Limiting factors in these areas are unsuitable soil texture, low temperature, shallow soil, high slope, low rainfall and drainage.
As for barley cultivation, a large part of the area, equal to 30635.3 hectares (more than 91%), is very suitable and relatively suitable. In these areas, in the northern and eastern parts of Lenjanat, unsuitable soil texture, shallow soil, high slope and low drainage are the most critical limiting factors for barley cultivation.
A comparison of "spatial distribution of land suitability" with "spatial distribution of cropping pattern" shows that the crops in this study (wheat and barley) have been cultivated in a suitable area in terms of the ecological potential of lands.
Conclusion
The results of this evaluation can be used in the spatial distribution of the optimal cropping pattern to select a suitable cultivation site for these two crops and other existing and alternative crops.
Wheat and barley are the major crops usually used in planning optimal cropping patterns, regardless of the economic issues. Considering suitable spatial distribution for wheat and barley, they should be distributed in such a way with the slightest difference compared to the current cropping pattern. On the other hand, a large area of the Lenjanat region is suitable for cultivating wheat and barley. In addition, an agricultural unit may have different capacities for other crops, so it is necessary to pay attention to the ecological potential of other crops. Wheat and barley should be cultivated in lands which are unsuitable or semi-suitable for other crops.
Accordingly, it is necessary to provide spatial zoning of existing and alternative crops in the Lenjanat area with fewer water requirements and higher economic benefits to be introduced in the optimal cropping pattern.
In this study, only agronomic-ecological criteria and needs with available data were examined due to data limitations in assessing crop suitability. Therefore, completing land suitability maps by considering more evaluation criteria such as evapotranspiration and the amount of water available is recommended.
Also, to have a "spatial distribution of the optimal cropping pattern", paying attention to the ecological potential of the lands, also considering other criteria and priorities such as natural, socio-cultural, economic and political criteria is necessary. So, we can develop a cropping pattern that provides a basis for desirable space dynamics.
Tajdin Karami, Ali Shamaei, Fateme Mohebi,
Volume 10, Issue 4 (12-2023)
Abstract
Abstract
Ecological resilience is a concept that implies the reversibility of ecological structures and functions against the shocks experienced. The northern zone of Tehran, as the most important ecological support of this city, has undergone many land-use changes in recent decades. The present study has analyzed the role of land-use change in the ecological resilience of green infrastructure (as one of the pillars of ecological structure) in District 1 of Tehran Municipality. This study is an applied one in terms of purpose and is considered a descriptive-analytical one in terms of the method used. In this study Landsat satellite data (1976-2021) were used to detect the changes of interest, and landscape metrics were used to analyze the ecological resilience conditions. Based on the results of this study period, the Number of Patches (NP) has significantly increased and the Class Area (CA) has decreased during the period covered by this study. These changes indicate the fragmentation process and loss of structural cohesion of the green patches. The measurement results for the connectivity metrics (ENN and GYRATE) also showed a small connectivity between the green patches in the area. In addition, the results for CONTAG (Contagion Landscape metrics) measure indicated that, due to low connectivity, the transmission rate is low. Therefore, it can be said that the green infrastructure of the region has lost its structural cohesion in the face of land-use change, and as a result, the expected ecological functions and services have also failed. According to the results, the green infrastructure of the study area is vulnerable to land-use changes and their ecological resilience has been significantly reduced.
Ms. Tahmineh Chehreara, Miss Somayeh Hajivand Paydari,
Volume 10, Issue 4 (12-2023)
Abstract
Identification of dust centers and, of course, the behavior of this phenomenon in different regions creates one of the problems of the last few decades, which is investigated as a hazard. To this end, statistics from 15 meteorological stations in the northeastern region of Iran, including North Khorasan, Razavi Khorasan, and South Khorasan provinces, were used over a 17-year period (2016-2000). To clarify the mechanisms governing dusty days, the meridional and zonal wind components and geopotential height were obtained by referring to the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR). HYSPLIT model and MODIS AOD values were used to track and identify dust centers. The results showed that during the warm season, due to the establishment of a strong quasi-stationary blocking system in the lower levels of the atmosphere, negative vorticity increased in the maximum air descent area, ultimately leading to the dominance of a northern flow for the region. Anomalies in geopotential height and vorticity were identified, and three dominant abnormal patterns were found in the occurrence of maximum dust storms in the region. An increase in geopotential height of more than 5 to 10 geopotential meters and an increase in negative vorticity are considered major conditions. By examining the tracking model and using satellite data, five main centers that affect over 90% of the region's dust storms were identified, among which Turkmenistan has a significant role with two separate centers and one common center with Uzbekistan in the occurrence of summer dust storms in northeastern Iran.
Arastoo Yari, Mehdi Feyzolahpour, Neda Kanani,
Volume 10, Issue 4 (12-2023)
Abstract
Earth surface temperature provides important information on the role of land use and land cover on energy balance processes. Therefore, the purpose of this research is to evaluate the LST patterns due to changes in land use (LULC). The studied area is located in Talesh region with an area of 300.6 square kilometers. For this purpose, Landsat images were downloaded in dry and wet seasons from 1365 to 1401. Four user classes were identified by maximum likelihood classification (MLC) and support vector machine (SVM) in 36-year intervals. The Kappa coefficient values for the SVM model were equal to 0.7802 and for the MLC model it was equal to 0.5328. NDVI, NDSI, and NDWI spectral indices were calculated for vegetation, barren soil, and water and were compared with LST in the above years. Changes in land use during the years 1365 to 1401 were an important factor in changes in the temperature of the earth's surface, which averaged from 13.7 degrees Celsius to 39.5 degrees Celsius in the wet season and -0.37 to 41.07 degrees Celsius in the dry season has been variable. Water areas and vegetation have the lowest and barren soil have the highest LST values. The highest negative correlation of -0.74 belongs to the NDVI index in 1365 and the highest positive correlation of 0.79 belongs to the NDSI index in 1365. The area of the forest area has decreased by 20.3% and agricultural land has increased by 217% in 36 years. Barren lands have changed the most and decreased from 2.68 square kilometers to 12 square kilometers. In general, LST has increased due to the increase of human activities such as the expansion of agricultural land and deforestation in the studied period.
Dr Sara Kiani, Dr Morad Kavyani, Dr Amirali Tavasoli,
Volume 10, Issue 4 (12-2023)
Abstract
The Namak Lake is situated between three provinces: Isfahan, Qom, and Semnan. However, the functioning of Namak Lake and its susceptibility to environmental, ecological, economic, and social influences not only affect the immediate surroundings but also impact other provinces. Naturally, a crisis in this lake can have negative effects on human communities and the residents of the surrounding areas in terms of environmental, economic, and social aspects. Therefore, the aim of this research is to identify the temporal-spatial changes in the salinity of Namak Lake and, subsequently, to investigate and analyze the effects of these changes on the environmental security of the surrounding regions. To achieve this goal, salt zones were identified using soil salinity indices, including the Normalized Difference Salinity Index (NDSI), Salinity Index 1 (SI1), Salinity Index 2 (SI2), and Brightness Index (BI), over a 30-year period (1992-2021) with five-year intervals. Then, using the maximum likelihood method, the salt zones were classified into four land cover types, including water zone, moist zone, salt zone, and other uses. The results of this study indicate that due to the reduction in water inflow into the lake as a result of dam construction in the upstream basin and the effects of climate change, the water zone, or seasonal lake, of Namak Lake has disappeared and the salt zone has expanded in this area. The most significant changes in the lake are related to the northwestern part of the lake, where major rivers such as Jajrood, Shur, Qarechai, and Qamaroud flow into this part of the lake, contributing to its drainage. Therefore, dam construction on these rivers has led to a downward trend in water flow into the lake. Furthermore, the results suggest that due to the absence of settlements and human communities near Namak Lake and the natural and climatic conditions of the region, it is not expected that environmental incidents that could have security and political implications will occur in the short term.
Fahimeh Pourfarrashzadeh, Fariba Beyghipour Motlagh, Mortaza Gharachorlu,
Volume 11, Issue 1 (5-2024)
Abstract
This study aimed to systematically explain the potential of the landslide occurrence to provide a prediction model of the possibility of this phenomenon in the Yamchi catchment in Ardebil province. In this regard, both approaches of discrete and continuous variables were used by means of overlay and logistic regression, respectively. Independent variables included elevation, slope, aspect, lithology, annual rainfall, roughness, general curvature, topographic wetness index, vegetation index, distance to fault, distance to stream and distance to road. The results, firstly, revealed the areas with high landslide potential by the matching layers of independent variables with the landslide layer in the geographical information system (GIS). These areas were in the middle elevation, high slopes, northern slope, high roughness, erodible formations, high rainfall, medium vegetation, surroundings of faults and rivers. Secondly, the results of the logistics regression model by providing a prediction equation of probability of landslide occurrence showed that the resulting model with pseudo r2 and ROC 0.22 and 0.86, respectively, had good power and efficiency to predict landslide through the catchment. In addition, the resulting beta coefficients for independent variables indicated that the importance of the variables was as follows: vegetation index distance to road, rain, lithology, distance to fault, elevation, topographic wetness index, roughness index, aspect, slope, and distance to river. In the end, the need to pay serious attention to the supporting and protection of vegetation cover of the mid -range and upstream of the catchment was determined because of unstable geomorphic conditions of these areas.
Mrs Mozhgan Shahriyari, Dr Mostafa Karampoor, Dr Hoshang Ghaemi, Dr Dariush Yarahmadi, Dr Mohammad Moradi,
Volume 11, Issue 1 (5-2024)
Abstract
Flash floods are one of the most dangerous natural events and often cause loss of life and damage to infrastructure and the environment. This research investigated the occurrence of the most intense continuous monthly floods (October-March) from 1989 to 2021. Precipitation data from 115 synoptic stations were selected. Then, the total rainfall of 1 to 9 days was sorted according to intensity. Using Minitab statistical software and the Andersen-Darling index, heavy rains were extracted based on the 95th percentile. Then, based on the criteria of the highest and lowest number of rainy days, the highest and lowest accumulated rainfall, the wettest and driest months were determined. Considering the three criteria of intensity, continuity, and rainfall coverage, the strongest storms in the wettest months were selected. The data used for synoptic analysis include the average sea level pressure data, the height and vertical component of the wind at 500 hPa, the wind and humidity field specific to the pressure levels 925, 850, and 700 hPa, and the horizontal moisture flux values specific to the pressure level 925, 850 and 700 hPa. The probability of the occurrence of atmospheric rivers was identified by the moisture flux extracted from the specific, meridional, and meridional wind components. The results showed that the storms of October 27-31, 2015, November 5-7, 1994, December 12-16, 1991, January 11-15, 2004, February 3-9, 1993, and March 13-15, 1996 were the strongest in the wettest months. During the storms of October, November, February, and March, moisture has been transported from the southwest of the Red Sea by atmospheric rivers to the western, southwestern, southern, and southeastern regions of Iran.
Mousa Kamanroudi Kojouri, Habibolah Fashi, Sgahla Barati Sadeh,
Volume 11, Issue 2 (8-2024)
Abstract
Developing roads and constructing new highway are urban policices contributing to solve transportation problems in cities. These projects often being passed through urban fabrics, so it is nessessery to buy and demolish buildings from their owners including individuals or governmental and public institutions to imply the projects. However, acquiring land is not an easy task and completing these projects may hit with long-term delays. This paper aimed to analyze the impacts of delaying in constructing Shoosh Highway in Tehran. The investigated impacts originate from land acquisition problems. The research data was obtained from many sources including documents and research reports, a survey, and interviews with Tehran Municipality managers. The One Sample T-Test in SPSS software was performed to analyze the data obtained form the survey. Findings indicate that the residents are often dissatisfied with the project because since the beginning of the project, social security decreased a lot and people are less likely to respect citizens' rights than before, recreational sites are often demolished, the value of residential buildings slowed down significantly, living costs incresed, and businesses were stagnant. In conclusion, if urban highways are not contributing to proper planning and site selection, they will disrupt the physical, social, and economic structures of urban neighborhoods and cause to many environmental problemes including air pollution. To avoid these adverse outcomes, it should be thought in advance about sufficient financial resources and possible practical methods to acquire land for projects. These consequences are reduced by studying and managing the risk of projects.
Negar Hamedi, Ali Esmaeily, Hassan Faramarzi, Saeid Shabani, Behrooz Mohseni,
Volume 11, Issue 2 (8-2024)
Abstract
Forest fire in many ecosystems is a natural phenomenon, but also a serious and dangerous threat with environmental, ecological, and physical effects. Therefore, this research investigated the risk areas of fire in Zagros forests identification to evaluate the changes in the time series of deals with a potential fire hazard. To achieve this goal fuzzy layers of analysis network process and order weighted average method were used regularly. For this purpose, fire Zagros forests using satellite images Landsat and MODIS Lordegan city in the period between 2000, 2007, and 2014 and the factors affecting fire are examined. The high-risk areas based on classification utility area and the number of zones were identified as fire-prone areas. In the analytical network process procedure, the largest weighs were assigned to the distance from residential areas and roads, GVMI index, and maximum daily air temperature factors which were 0.209, 0.198, 0.09, and 0.0716, respectively. Time series analysis map showing the extent of critical areas from 2000 to 2014 decreased by investigating the factors affecting fire occurrence in critical areas, distance for roads and residential areas, slope, aspect, GVMI index, and NDVI and maximum temperatures have the greatest impact were on fire. The low-risk scenario and a small amount of compensation with the ROC higher than 0.7 as the best model was the estimated risk of forest fires. The preparation of a map of areas susceptible to fire, as well as analyzing and analyzing the time series of factors affecting the fire in different years, is an effective step in helping forest managers to plan and implement preventive operations in high-risk areas.