Search published articles


Showing 11 results for Khosravi

Ali Ahmadabadi, Abdolah Seif, Somaye Khosravi, Amanalah Fathnia,
Volume 2, Issue 2 (7-2015)
Abstract

Land degradation in arid, semi-arid and sub-humid areas, leads to  desertification and land degradation is a concept that refers to any reduction of soil potentials. In Iran, that 85 percent of its area is classified in arid and semi-arid climates, and  one percent per annum growth rate of desertification and its increasing trends, finding ways to evaluate this phenomenon and its causes in the form of models seems essential. In Iran, especially southern areas due to their arid climatic conditions, are considered to be areas prone to desertification. This study aims to evaluate and analyze the vulnerability of desertification in the Mond watershed located in the northern coast of the Persian Gulf.

     In order to evaluate the potentials of desertification in the Mond watershed, geological, the erosion (water erosion potential), rainfall, slope, elevation levels and land use maps are used.  To identify vegetation cover conditions Landsat ETM + sensor data and normalized vegetation index (NDVI) are used.

     Where in reflected in the near-infrared band (Band 4, Landsat ETM+) and the reflection in the visible band (band 3 sensor ETM+) respectively. Overlaps and combines the above criteria is done using E-VIKOR (VIKOR developed) a method of multi-criteria decision-making models (MCDM). This method is based on a compromise plan proposed in the compromise solution is justified determines solutions that are as close to the ideal solution and has been created through special credit decision-makers. VIKOR use linear approach normal. The normal value in VIKOR  is not related method unit of measure. Also standardization effective indicators of desertification has been done using a linear scale.

      In this study, the ANP method (Analytical Network Process) was used for weighting criteria. Analysis method Network, is one of the popular methods of multi-criteria decision problems. This method complex relationship between and among the elements of the decision by replacing hierarchical network structure considers. Table 1 shows the weights of the effective criteria in desertification. In this study 7 criteria are used that results show criteria’s of climate and vegetation, have the most effective measures in the area of desertification and erosion (water and wind) have the least amount of importance in the region.

Table 1: weight criteria of effectivein desertification

criteria

vegetation

erosion

Precipitation

Landuse

Geology

Slope

Elevation levels

weight(W)

0.21

0.18

0.15

0.14

0.13

0.11

0.08

    After mapping the effective indicators in evaluating desertification separately, Standardization of maps, weighting the index, To obtain amount and   , Finally, the amount of , was produced Zoning map of desertification that in it Mond watershed in the province Bushehr in terms of desertification is divided into five ratio and the area is provided in Table 2.

Table 1: Percentage and  area zone of desertification

amount vulnerabilities

Area (ha)

Area (in percent)

Very low

516300

11

low

598900

13

Average

1438025

30

High

2168675

46

Very High

40825

1

    Studies show that more than half of the Mond basin have on the surface with average risk of desertification and In the continuation of the current trend of soil degradation, desertification prone zones and will be reduced all lead to the deterioration of the natural ecosystems and human life quality.


Mahmood Khosravi, Samad Fotohi, Soliman Pirouzzadeh,
Volume 2, Issue 4 (1-2016)
Abstract

Iran is among 10 top potential countries of occurrence of natural hazards in the world and from among 35 natural hazards, so far about 30 hazards have occurred in Iran(Negaresh and Latifi,2009). One of the different types of natural hazards which every year causes a lot of damage particularly in arid and arid regions of the world is the existence of sandy hills(Omidwar,2006); sandy hills are mostly created in coastal regions of most seas and oceans. These hills are the result of mutual effects of waves, marine currents, wind and sediments available in coastal regions. They are implemented with components of the coastal environment and construct the eco-systemic bases in which there are valuable collection flora and fauna(Kidd, 2001). The studied region is among the deserts near Gulf of Oman coasts. Sand on the coast are with marine origins and by getting far from the sea, sandy hills, in addition to having marine origins, have land origins. In some seasons of the year, particularly in summers and falls in which Monsoon winds start blowing up, the range of the movement of running sands is more towards rural regions in such a way that annually, a large part of sands covers residential areas, farmlands, road & building facilities, and infrastructural facilities in the rural areas of the west of Zarabad and left behind heavy damages and losses. The aim of this study is the detection of temporal-spatial changes in sand dunes in the Gulf of Oman coastal region. In addition, trend and severity of this hazard and the effects of climatic and environmental factors that intensified dimensions of risk were considered.

The present study, to achieve the mentioned objective is an applied study and in terms of research, a method is a descriptive-analytical one. To collected data, it uses library-documentary as well as survey studies in the rural areas of the west of Zarabad. After that, to investigate the changes of the degree of displacement in dunes of the studied region in the 23 year time period (1991-2014), GPS and the Enhance Thematic Mapper Plus (ETM+) images of the Landsat Satellite 7 and 8 with the spatial resolution of 15 and 30 m were used. The satellite images were used in this study with time intervals of 10 and 13 years were related to years of 1991, 2001, and 2014 in August respectively and they were extracted from USGS.The ENVI software and Geographic Information System were used for images processing and interpretation. The geometric and radiometric corrections were applied on images according to standard procedures. Finally, classification and related calculation were performed.

The conducted studies in the region based on the interpretation of satellite images and survey studies indicated that changes in the available users in the region, the top increases for dunes occurred in 1991 as 561.25 km2, in 2001 as 568.10 km2, and in 2014 as 575.45 km2. In fact, it has experienced a growth as 17.198 km2. The vegetation whose area covers 32 km2 in 1991, in 2014 has reached an area with 45km2 and increased as 1.6% compared to the previous period. In 1990 to 2014, the area of the user which has been changed in favor of dunes, includes 0.108 km2 vegetation, 10.60 km2 stream sediment, and 264.35 km2 arid lands. Therefore, dunes move with high speed after each storm and during these displacements, a lot of damages are imposed on farmlands, facilities, and rural settlements. Investigating the degree of imposed damages indicates that annually, a large area of regions such as villages, roads, and facilities are influenced by running sands, which this trend can cover more regions in future years. The degree of displacement of dunes, according to the analyses conducted during the research period(1990-2014), has been so great that it has caused the burial of a large number of villages, infrastructure, farmland and roads and resulted in the unemployment of a large number of farmers in the region. Imposed damages to rural settlements have not been less than agricultural sectors and facilities. Therefore, due to the movement of running sands during recent years, 15 villages have been at the exposure of damages in such a way that compensation of these damages has imposed heavy costs, and consumed a lot of time on the shoulder of the society. As a result, the movement of dunes towards studied villages, i.e. Biahi, Mashkouhi, Abd, Rig Mostafa, Kalirak, Kerti, and Gati which are in the coastal regions, and Sohraki, Ganjak, Tanban, Zahrikar, and Kaidar which are located at far distances from the coast suffer from the highest amount of dunes and are considered as the most critical regions in terms of the movement of sand dunes. The results also showed that the important factors on severity and development of these critical regions are: a shortage of precipitation , loose and fine-grained sediments, low slope, no obstructions against the marine winds and high frequencies of winds and storms in this region.On the other hand, the lack of any varieties of vegetation on dunes, as well as the drought of recent years confirms spatial-temporal changes in the sand dunes towards the study area.

In this research, the hazards due to running sands in the West region of Zarabad (Baluchestan) were studied. The results from satellite image interpretation and field works were showed that the greatest change of land cover in recent years was related to sand hills. The total areas of sand dunes in 1990 are 561 km²,in 2001 these area increases to 568 km² and finally in 2014 reached to 578.5 km².The average growth rate is about 0.76 km² per year. The  landcover change from river sediments and barren land to sand dunes, during this period are estimated 10 and 264 km².

The storm and marine winds moving  sand dunes and running sands from coastal regions to rural settlements,farmland,Roads and other Infrastructures of the region. This hazard was just too much damage like  buried villages, the destruction of roads and unemployment and migration of farmers. The number of evacuated villages are 15 cases that some of these villages is located in the coastal region(Biahi,Mashkohi,Abd,Kalirak……..) and others in inland(Soharaki,Ganjak,Tanbalan,…..).

This is the manifestation of crisis and instability in the rural communities that creating important obstacles to development and it is triggered vulnerable rural development was decreased.


Said Balyani, Yones Khosravi, Alireza Abbasi Semnani,
Volume 3, Issue 4 (1-2017)
Abstract

Hazard is potential source of harm or a situation to create a damage. So identification of zones exposed to hazards is necessary for planning or land use planning. But this situation becomes more critical when they appear at the population centers. So applying the principle of passive defense based on environmental capabilities is unarmed action that caused the reduction of human resources vulnerability, buildings, equipment, documents and arteries of the country against the crisis by natural factors such as drought, flood, earthquake, etc. Considering the possible occurrence of such risks in population centers, ready to deal with what is known unpleasant and undesirable consequences is necessary. On this basis and given the importance of population centers in Helle and Mond basins, in this study, the authors tried to analyze the Rain hazards of drought and flood.

The study area,Helle and Mond basins, with about 21,274, 47653 km2 area, respectively are located in the south of Iran. The Helle basin approximately is between 28° 20'N and 30° 10'N latitudes and between 50° E and 52° 20'E longitudes and Mond basin is between 27° 20' and 29° 55' latitudes and between 51° 15' and 30° 27'E longitudes.These basins are located in sides of a massive sources of moisture, Persian Gulf.

In this study, data from 23meteorological and synoptic stationsstations, during aperiod of20 years (1992-2011)in northern region of the Persian Gulf (Mond and helle basins)were used to calculate Standardized Precipitation Index (SPI). The data were collected by the Iranian Meteorological data website (http://www.weather.ir). The SPI is primarily a tool for defining and monitoring drought events. This index may be computed with different time steps (e.g. 1 month, 3months, 24 months). The SPI is defined for each of the above time scales as the difference between monthly precipitation (xi) and the mean value ( ), divided by the standard deviation. To assess flood risk zones, the flood, annual evapotranspiration, cities and populations centers layers were collected in Helle and Mond basins position. The annual precipitations and the SPI maps were drawn by Geostatistics, Kriging. It also the flood and annual evapotranspiration layers were weighted by Euclidian distance method, separately. Finally, all layers are weighted by AHP and fuzzy-linear methods (descending and ascending linear function) into vulnerable layers. The final map of vulnerable areas with flood and drought high risk was drawn based on the algorithm of linear-Fuzzy in a raster format.

According to the results, eastern, north eastern and south eastern part of Mond basin had high annual precipitation. Based on this result, it said that these parts of study area were known the least dangerous areas of vulnerability. The results also showed that with passing of the western regions and going to the center of the study area the annual rainfall have been added over the years. Kazeron, Chenar Shahijan, Firouz Abad, Borm plains and some parts of Khane Zenyan and Dash Arzhan are cities located in this regions. Low latitude, Proximity to the warm waters of the Persian Gulf, low annual precipitation and high temperature causing evaporation and inappropriate environmental conditions in Boushehr province and some coastal cities such as Genaveh, Deilam, Boushehr, Baghan, Lar and Khonj. Accordingly, west, north west, south and south west regions in Helle basin were located in extreme vulnerability zone with a loss of annual rainfall for drinking and agricultural production and poor nutrition underground aquifers.


Mrs Hajar Pakbaz, Dr Mahmood Khosravi, Dr Tagi Tavousi, Dr Payman Mahmoudi,
Volume 5, Issue 2 (9-2018)
Abstract

As 7 Stations include; Ardebil, Sarab, Shahrekord, Ahar, Takab, Zanjan, and Saghez were experiments on average every year less than 30 days with thermal stress. From these 7 stations, Ardebil and Sarab regions, having 3 and 7 days with thermal stress, respectively, have the least amount of days with heat stress. All the days with the heat stresses obtained for these stations have been the days of the first class of heat stress map, and all of them were randomly distributed over the warm period of the year.
But in contrast to this stations that had the fewest days of thermal stress, southern Iranian stations, especially those stationed at the Persian Gulf and the Gulf of Oman Sea coasts, were the most frequent days of heat stress.
The two Jask and Chabahar stations with the annual average of 304 and 301 days, with the highest thermal stress, were the most frequent regions of Iran. The lower latitudes, lower elevation, higher temperatures and relative humidity are factors that make the conditions for having the most frequencies of days with heat stress in this part of Iran.
The spatial pattern of five classes this index also show different patterns in comparison with each other so that as all stations in Iran experience at least 3 days of thermal stress in the first class during the year. But with increasing intensity classes, the number of stations that experience the conditions of these five classes over a year will be reduced. As for the second class, 16.2% of the stations, for the third class, 55.4% for the fourth class, 83.7 %, and finally for the fifth class, 90.5% of stations, do not experience comfort in any way during one year. Finally, with regard to the important role of the elevations in the spatial distribution, the relationship between the total frequency of days with thermal stress and elevation was modeled using classical linear regression model. The results of this model showed that per 100 meters above sea level, 9 days from the total frequency of days associated with Iran's thermal stress is reduced. This downward trend is such that there is no thermal stress in Iran at 2300 m above sea level. In other words, the height of 2300 meters is the elevation border between the occurrence and absence of days with thermal stress in Iran.
 
Dr. Baqer Kord, Dr Amin Rahati, Dr Peyman Mahmoudi, Mr Parviz Khosravi, Ms Harir Bidar,
Volume 7, Issue 2 (8-2020)
Abstract


 

Prioritizing the counties of Sistan and Baluchestan province in order to optimize the management of drought budget
 
Abstract
Drought is one of the most significant natural hazards which affects various aspects of human life with its gradual, slow and creeping occurrence. As a disastrous climate phenomenon, it directly impacts on human communities through making changes in access to water resources, and imposes enormous economic, social and environmental costs on various communities. One of the strategies governments always use to compensate the damages that droughts impose on various economic, social and environmental sectors is to include special financial loans in the form of grants, special development credits, special structural projects, and so on. Therefore, in this regard, a lot of financial aids have been allocated by the government for it. But, sometimes, it is observed that the allocation and distribution of drought credits among different cities of the province have been more influenced by political, ethnic, and religious interests rather than by the severity of the drought and its detrimental effects on various economic, agricultural, and social sectors. Therefore, in this study, it has been tried to present a method based on an optimization model in order to take a step in optimizing the management of drought budget based on realities in Sistan and Baluchestan province in south-east of Iran.
In this study, the indicators proposed by the Cabinet of Ministers of the Islamic Republic of Iran for reducing the effects of drought were applied to manage the optimal distribution of drought budgets among the cities of Sistan and Baluchestan province in southeast of  Iran. These indicators were population, having urban and rural drinking water, vulnerability of water resources, surface area under cultivation, number of users of agricultural sector, annual consumption of agricultural water, and rainfall. Using the figures given in the 2011 statistical yearbook, numerical values ​​for each of these indices were obtained. But given that these indices are not of equal importance in each city and some may be more important in one city and less important in another, the Analytical Hierarchy Process (AHP) technique using paired comparison method was applied to determine the relative importance of these indices in Sistan and Baluchestan province. Using this technique, a relative weight was determined for each of these indicators and for each city. In addition to determining the weight of these indices, it was needed to convert droughts in the province to numerical values. In this study, to analyze droughts in Sistan and Baluchestan province, Standardized Precipitation Index (SPI), which is one of the proposed indicators of World Meteorological Organization (WMO) has been used for a period of 30 years (1984-2014) and for 6 synoptic stations.
The results of drought analysis in Sistan and Baluchestan province in an annual scale showed that the frequency distribution of different drought levels in Sistan and Baluchestan province has not been uniform, with the most droughts occurring in this 30 year period in northern part of the province (Zabol and Zahedan) including 14 and 13 repeated cases; respectively, with the lowest in central part of Baluchistan (Khash and Saravan) including 11 repeated cases. But, what should be noted after the frequency of droughts is the persistence and durability of droughts. As a result, weak but long-lasting droughts can be much more damaging than severe but short-lived droughts. Sistan and Baluchestan province has been under drought with varying degrees of severity from the water year of 1998-1999 to the water year of 2005-2006. But in the meantime, the north of Sistan and Baluchestan province (Zabol station) has a condition which is very different from other parts of the province. The north of Sistan and Baluchistan province has been experiencing severe droughts for 14 years from the year 1999-2000 to 2012-2013 with the exception of the year 2004-2005. It has been the long-term drought persistence in the province that has caused many environmental, economic and social problems, such as the drying up of Lake Hamoun and the water reduction in the Hirmand River in the north of the province, and severe reduction of groundwater resources in central Baluchistan. Therefore, given that Sistan and Baluchestan province has experienced 7 years of continuous drought between the two water years of 1998-1999 to 2009-2010, these seven years were chosen as examples, and the ant colony algorithm was implemented on them.
Based on the selected criteria and the proposed method, it seems that the combination of Analytic hierarchy process (AHP) technique and Ant colony algorithm can formulate an intelligent system to determine the priority of the cities in Sistan and Baluchestan province during droughts for allocating the optimal budget and reducing the harmful effects of droughts. Based on the prioritization maps of optimal drought budget allocation among the cities in Sistan and Baluchestan province, an almost good agreement can be observed between the results and the realities existing in the province.
Keywords: Sistan and Baluchestan, ant colony algorithm, Analytical Hierarchy Process, budget, Management
 
 
 
Koohzad Raispour, Yones Khosravi,
Volume 7, Issue 2 (8-2020)
Abstract

Abstract
Air pollution is one of the most important problems in many countries in the world, which, besides the environmental damage and human health, imposes many adverse social and economic impacts. Therefore, considering the vital importance of air and the rising course of increasing the contaminating agents in recent decades, it is necessary to study the elements and their pollutant gases in order to be aware of the existing situation and to adopt the necessary solutions. The phenomenon of atmospheric air pollution in Iran, as part of the world's atmosphere, is one of the goals of the industrial revolution, which has been increasing day by day as industrialization; population growth and urbanization have grown dramatically. Carbon monoxide (CO) is a colorless, odorless, and tasteless gas that is slightly less dense than air. In the atmosphere, it is spatially variable and short lived, having a role in the formation of ground-level ozone. Carbon monoxide consists of one carbon atom and one oxygen atom, connected by a triple bond that consists of two covalent bonds as well as one dative covalent bond. Carbon monoxide is produced from the partial oxidation of carbon-containing compounds; it forms when there is not enough oxygen to produce carbon dioxide (CO2), such as when operating a stove or an internal combustion engine in an enclosed space.
Carbon monoxide is one of the most dangerous air pollutants. Due to its importance, many techniques and methods have been used to monitor the Earth's atmosphere in recent years. as well as, the use of satellite data has become widespread because of the availability and availability of features such as spatial, temporal and spatial resolution. In this study, the data from Aqua / AIRS Carbon Monoxide data can be used to study the rate and trend of carbon monoxide gas changes in the atmosphere of the entire world, including Iran.The relevant data in NetCDF format, with one-day and 13.5 x 13.5km spatial resolution of during the 16-year statistical period (2003-2018), was extracted from ttps://disc.gsfc.nasa.gov/datasets/AIRS3STM_006 using ArcGIS software And Grads are processed, represented, analyzed.
The results indicate that the amount of carbon monoxide was reduced during the monthly and annual time series. Of course, monthly and seasonal variations have been impressive. Monthly, the highest concentration of carbon monoxide in January, February and March, and the lowest in August, September and October. Among the seasons, the highest and lowest levels of carbon monoxide were observed in the seasons of winter and summer, respectively. In spatially, the highest amount of surface carbon monoxide with an average of 150 ppb above the city of Tehran and the coastal area of the Caspian Sea and its lowest level with an average of 115 ppb on the Zagros heights was observed.
The results clearly show a clear picture of the dispersion of carbon monoxide gas in the horizontal and vertical direction of Iran's atmosphere. Based on the results obtained from the monthly carbon monoxide data collected during the statistical period (2003-2018), conducted in a three dimensional and regional area extending to the geographical area of Iran, The average surface carbon monoxide of more than 150 ppb above the Tehran metropolitan area and northern coast of Iran is less than 115 ppb on Zagros altitudes. Among other results, there are significant differences between the monthly carbon monoxide average in the surface troposphere of Iran, so that in the twelve months, the highest amount of carbon monoxide was observed in cold months and the lowest was observed in the warm months of the year, respectively. Seasonally, the highest level of seasonal carbon monoxide has been observed in winter and its seasonal season has peaked in summer. The results of vertical profiles (vertical aspect) of carbon monoxide changes in Iran's atmosphere in line with latitude and longitude indicate the maximum carbon monoxide concentration at lower levels of barley so that the maximum amount of carbon monoxide in the Iranian atmosphere is concentrated in the lower levels and Rarely exceeds the level of 250 hPa. Also, the results indicate that the rate of carbon monoxide emissions in the atmosphere of Iran has decreased, so that in the last years of the statistical period, about 30% of the amount of carbon monoxide in the atmosphere of Iran has been reduced, compared to the early years of the statistical period.
 
Key words: Air Pollution, Carbon Monoxide, AIRS, Remote Sensing, Iran.
 
 
 
Ghasem Keikhosravi, Shahriar Khaledy, Ameneh Yahyavi,
Volume 7, Issue 3 (11-2020)
Abstract

This study was conducted to investigate the foehn mechanism in the Alborz Mountains.For this purpose, daily temperature, mean and maximum daily temperature, minimum, mean and maximum daily relative humidity, hourly wind direction and velocity data were collected and prepared at 8 selected stations over a 10-year statistical period (2006-2010). To derive the sum of frequency of occurrence of foehn, hot days are extracted using Baldy index and taking into account wind direction relative to station position and temperature rise compared to previous days were identified as days associated with foehn. Then, using NCEP / NCAR database data, different atmospheric alignment maps were obtained for the selected samples and plotted in Grads software environment. Then the position of high pressure cores and adjacent low pressures on the maps were determined. Results showed that Masouleh station with 41 days frequency and Astara and Bandar Anzali station with 18 days had the highest and lowest occurrence of foehn. Investigations on the synoptic maps of 35 foehn events showed that a total of three groups of Anti-cyclone or high-pressure centers were affected by the synoptic pattern of the region in the days involved. The first group is the Siberian High Pressure Tabs, whose cores are located in the confines of Lake Baikal, Balchash and northern Pakistan, depending on the season and synoptic conditions. The low pressure cores are located on the Caspian Sea and the pressure difference between the high pressure tab of the Alborz Outer Slopes and the Caspian Sea causes a compressive stress. In this model, Cyclone currents with increasing moisture of the Caspian Sea on the western slopes of Alborz Heights cause precipitation and warm flow due to warming under windward slopes. The second group is the anticyclone of Saudi Arabia, in which specimens with spin cores are deployed on southwestern Iran. As the north side of the Arabian High Pressure extends northwest of Iran and the presence of low polar pressure in the Caspian region with intensified compressive flow causes currents southwest along the perpendicular heights. Western anticyclone currents in the Arabian Sea circulate the moisture of the southern warm seas to northwestern Iran. The third group is a combination of African anticyclones, immigrants, Siberian highs and its tabs that create a thermal and compressive style over the study area and west of the Alborz Mountains. And provide the basis for the formation of the foehn phenomenon.


Mr Hossien Rahi Zehi, Dr Mahmood Khosravi, Dr Mohsen Hamidian Pour,
Volume 8, Issue 1 (5-2021)
Abstract

 
   
The Spatio-Temporal Variations of Aerosol Concentration Using Remote Sensing in Sistan and Baluchestan Province (2018 - 2000)
 
 
 
Abstract
Atmospheric particles play an important role in balancing the energy budget of the Earth's surface. The Sistan and Baluchestan province because of the specific geographical conditions during the year is witnessing the spread of dust particles caused by dust storms. This paper investigates the spatial changes of this phenomenon in the region to identify the association of dust accumulation and the reasons for these concentrations. In this study, the AOD Index data of the Aqua and Terra Modis Satellite Sensor (MODAL2_M_AER_OD) with 10 × 10 km spatial resolution were used. Then, by using statistical methods, a spatial analysis was done and the temporal and spatial changes trends at 95% and 99% significance level were performed using the nonparametric Mann-Kendall method. The results showed that the maximum concentration of aerosol in areas such as Zabol, Zahak, Hirmand, Hamoun, Iranshahr, Bampour, Jazmurian basin, Chabahar, and Konarak. On average, the highest variations in aerosol concentration were in the southern regions of the province include Dashtiari, Polan, and Chabahar, and the least in the northern part of Polan, Chabahar, Konark, and Bampour areas. The trend of changes was evaluated at two significant levels of 95 and 99%. The results of this section showed that the AOD had a positive and increasing trend in June, July, and August in the areas of Dalgan, Iranshahr, Bampour, Bazman, Mirjaveh, Nokabad, Zahedan, Nosratabad, Zaboli, Qasrqand, Irandegan, and Sib-va-Soran Plain and areas such as Korin, Zabol, Zahak, Sirkan (Bamposht), Hamoun have a negative and decreasing trend. The average changes in aerosol concentration in June, July, and August show a significant increase in the aerosol concentration from 2015 to 2018 up to 0.8.
 
Keywords: Environmental Changes, Dust, Environmental Hazards, Climate.
Roya Poorkarim, Hossein Asakereh, Abdollah Faraji, Mahmood Khosravi,
Volume 9, Issue 4 (3-2023)
Abstract

In the present study, the data of the ECMWF for a period of 1979 to 2018 was adopted to analyze the long term changes (trends) of the number of cyclones centers of the Mediterranean Sea.There are many methods (e.g. parametric and non- parametric)  for examining changes and trends in a given dataset. The linear regression method is of parametric category and the most common nonparametric method is Mann-Kendall test. By fitting the Mann-kendall model and the linear regression model, the frequency of the cyclone centers of the Mediterranean basin was evaluated in seasonal and annual time scales. Analyzing the trend of changes of the number of cyclone centers on a seasonal scale showed that the five-day duration have had a significant trend in spring, autumn and summer. Whilest on an annual scale, there was no significant trend in any of the duration. By fitting the regression model on seasonal and annual scale, one- and two-day duration have a positive regression line slop.
Alireza Khosravi, Mehdi Azhdary Moghaddam, Seyed Arman Hashemi Monfared, Hamid Nazaripour,
Volume 9, Issue 4 (3-2023)
Abstract


Comparison of Results of GIS-Based Multicriteria Decision Analysis and Remote Sensing Indicators in Kahir River Basin, Iran.

Alireza Khosravi1, Mehdi Azhdary Moghaddam2*, Seyed Arman Hashemi Monfared3,
 Hamid Nazaripour4

1. M.Sc. Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
2. Professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
3. Associate professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
4.Assistant professor, Department of Physical Geography, University of Sistan and Baluchestan, Zahedan, Iran.


Abstract
Flood risk maps and Flood zoning techniques are useful tools to manage this hazard in the catchment and mitigation of flood impacts. In South Baluchestan and Kahir Basin, due to the existence of winter and summer precipitation regimes, the occurrence of flash floods is inevitable due to the establishment of rural communities and settlements in flood-prone areas, the flooding has caused many damages to the region's vulnerable population. In order to zone flood risk and prepare flood risk maps, climatic data, hydrological, land cover, and topography of the basin were prepared from reliable sources and according to scientific studies, 12 variables affecting flood risk in the form of five main components (Hydrology, vegetation, land cover, climate, and topography) were prepared. According to the regional conditions of the basin, using the opinions of experts based on scientific methods, the weight of each variable and component was determined by Analytical Hierarchy Process(AHP). Using two methods of fuzzy overlay, Weighted Overlay, and the Geographical Information System facilities, a map of variables and components was prepared after reclassification and fuzzy membership function with appropriate operators. The results showed that the fuzzy overlay method concerning its dominant logic has a better distinction of flood-prone areas and can help determine flood hazard micro-zonation in the drainage basins like the Kahir basin. By comparing the results from the real data of the January 2020 flood obtained from satellite images. Due to poor infrastructure and high economic, the risk of flooding may be more harmful and widespread in the future.

Keywords: Flood, Fuzzy logic, Weighted overlay, Southern Baluchestan, GIS.
 
Leila Ahadi, Hossein Asakereh, Younes Khosravi,
Volume 10, Issue 2 (9-2023)
Abstract

Simulation of Zanjan temperature trends based on climate scenarios and artificial neural network method

Abstract
Severe climate changes (and global warming) in recent years have led to changes in weather patterns and the emergence of climate anomalies in most parts of the world. The process of climate change, especially temperature changes, is one of the most important challenges in the field of earth sciences and environmental sciences. Any change in the temperature characteristics, as one of the important climatic elements of any region, causes a change in the climatic structure of that region. The summary of the investigated experimental models on climate change shows that if the concentration of greenhouse gases increases in the same way, the average temperature of the earth will increase dangerously in the near future. More than 70% of the world's CO2 emissions are attributed to cities. It is expected that with the continuation of the urbanization process, the amount of greenhouse gases will increase. According to the fifth report of the International Panel on Climate Change, the average global temperature has increased by 0.85 degrees Celsius during 1880-2012. Therefore, knowing the temperature changes and trends in environmental planning based on the climate knowledge of each point and region seems essential. For this reason, the present study simulates the daily temperature (minimum, maximum and average) of Zanjan until the year 2100.

Research Methods
The method of conducting the research is descriptive-analytical and the method of collecting data is library (documents). To check the temperature of Zanjan city, the minimum, maximum and average daily temperature data from Hamdeed station of Zanjan city during the period of 1961-2021 were used. The data of general atmospheric circulation model was used to simulate climate variables (minimum, average and maximum temperature) using artificial neural network and climate scenarios in future periods. The output variables in this study are minimum, maximum and average daily temperature. Therefore, three neural network models were selected. For model simulation, model inputs (independent variables) need to be selected from among 26 atmospheric variables. Therefore, two methods of progressive and step-by-step elimination were chosen to determine the inputs of the model. In these methods, climate variables that have the highest correlation with minimum, maximum and average daily temperature were selected. By using RCP2.6, RCP4.5 and RCP8.5 scenarios, variables were simulated until the year 2100. Markov chain model was used to check the possibility of occurrence of extreme temperatures of the simulated values.

results
According to the RCP2.6, RCP4.5 and RCP8.5 scenarios and the simulation made by the neural network model, it is possible that on average the minimum temperature will be 3.6 degrees Celsius, the average temperature will be 3.3 degrees Celsius and the maximum temperature will be 2.7 degrees Celsius. Celsius will rise. The monthly review of the simulated data for all scenarios and the observed data of the studied variables shows that the average minimum, average and maximum temperatures in January and February, which are the coldest months of the year, will increase the most and become warmer. While the average minimum temperature in August, the average temperature in April and the maximum temperature in October will have the least increase. According to the simulated seasonal temperature table based on all scenarios, it was found that the average minimum, average and maximum temperature observed with the maximum simulated conditions were 6.9, 5.5 and 5.4 respectively in the winter season, and 3.3 in the spring season. 4, 2.3 and 3, in the summer season it increases by 3.3, 3.4 and 1.4 and in the autumn season it increases by 4.6, 4.5 and zero degrees. The frequency of extreme temperatures observed in all three variables of minimum, average and maximum temperature for the 25th and 75th quartiles is less than the number of occurrences of extreme temperatures simulated in all three scenarios. Based on this, all three variables will increase and there will be fewer cold periods. An increase in night temperature and average temperature in winter season and maximum temperature in summer season will occur more than other seasons. The difference between day and night temperature will be less in autumn and summer. Also, all seasons, especially the summer season, will be hotter and the occurrence of extreme temperatures is increasing for the coming years.

Keywords: climate scenarios, simulation, extreme temperatures, artificial neural network, Zanjan



 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb