Showing 42 results for Type of Study: Applicable
Mis Vajihe Gholizade, Dr Amir Saffari, Dr Ali Ahmadabadi, Dr Amir Karam,
Volume 12, Issue 46 (9-2025)
Abstract
Introduction: Assessing the vulnerability and pollution of the aquifer is necessary for the management, development and allocation of land use, quality monitoring, prevention and protection of groundwater pollution. The purpose of this research is to identify and analyze the qualitative vulnerability of the Mashhad plain aquifer in order to monitor and manage underground water resources and prevent its future pollution.
Methodology: Mashhad plain is located in the northeast of Iran between Binaloud and Hezarmasjed mountains and in the watershed of the Kasfroud river, and its area is 2527 square kilometers. In this research, the vulnerability of the Mashhad Plain aquifer was evaluated with DRASTIC and SI models, and ArcGIS was used to analyze the parameters and prepare the vulnerability map. DRASTIC model is one of the overlap and index methods. In this method, the seven measurable parameters for the hydrogeological system include the depth of the groundwater level(D), net recharge(R), aquifer environment(A), soil environment(S), topography(T), Impact of the unsaturated Zone(I) and hydraulic conductivity(C) is used. The ratings for the sub-layers of each criterion vary from one to ten depending on their impact on the vulnerability potential. In SI method, five parameters of groundwater depth(D), net recharge (R), aquifer lithology(A), topography(T) and landuse(LU) are used for aquifer vulnerability. After preparing the SI model layers and weighting each of the layer classes using the functions available in the ArcGIS, the sensitivity index is obtained from the weighted sum of the mentioned parameters.
Conclusion: Study area is divided into four zones with very low vulnerability(21.85%), low(32.09%), medium to low(31.05%) and medium to high vulnerability(14.59%). Also, based on the results of the SI model, the study area is divided into five areas with very low vulnerability(0.4%), low(24.63%), medium to low(23.98%), medium to high(18.71%) and high vulnerability(32.25%). In general, the vulnerability of the aquifer increases from the southeast to the northwest.For verification, statistical method and calculation of correlation coefficient between vulnerability maps and TDS layer was used in TerrSet software and the results showed that both DRASTIC and SI models have high accuracy in zoning the vulnerability of Mashhad plain aquifer, so that the correlation coefficient of vulnerability maps with index The quality of TDS in Drastic model is (0.996) and in SI model (0.995); Therefore, the results of the following research can be used in environmental assessments and analysis of various pollutions and can be used as a basis for management decisions.
Enayat Asdalahi, Mehry Akbary, Zahra Hejazizadeh,
Volume 12, Issue 46 (9-2025)
Abstract
Objective: The main goal of this research is to identify and analyze the seasonality of the most widespread Torrential rains in Iran during the years 1940 to 2023.
Methods: To achieve this goal, precipitation data was obtained from the ECMWF database with a spatial resolution of 0.25 by 0.25 degrees of arc for the Iranian region during the study period. The next step was to calculate the threshold of torrential precipitation for each cell seasonally using the 95th percentile, and days with torrential precipitation were identified. By applying the condition of the highest spatial spread of the 95th percentile, the days with the most widespread precipitation above the threshold were identified for each season. Finally, the prevailing atmospheric conditions were examined.
Results: Analysis shows that the highest precipitation of 146.85 mm occurs in winter and the lowest of 85 mm occurs in summer. The highest spatial coverage of total precipitation occurs in spring (41.9), winter (40.69), autumn (32.55) and summer (16.84), respectively.The analysis of sea level pressure indicates that during widespread precipitation in the summer, a low-pressure belt extended from the westernmost to the easternmost regions of the upper atmosphere map, encompassing Iran. In contrast, during other seasons, a high-pressure belt was present in the same area. At the 500 hectopascal level in summer, a closed high-pressure dynamic cell was observed over Iran, while at the 850 hectopascal level, two low-pressure centers over Saudi Arabia and Pakistan intensified instability over Iran. Consequently, it is evident that at lower levels, the conditions for atmospheric precipitation were stable, and even the omega level at 500 hectopascals over Iran on that day indicated a weak upward movement of air. However, in other seasons, a trough consistently positioned over western Iran, with active band patterns in spring and winter, facilitated the slowing and diversion of currents toward moisture sources, thereby enabling the transfer of more moisture than normal conditions to Iran. The precipitation study revealed that, except for the summer season, wind dominated over Iran. The presence of wind intensified instability at lower levels. A study of the Atmospheric River reveals that during widespread rainfall across all seasons, the Atmospheric River, which originates from the Red Sea and the Persian Gulf, has consistently been present. However, in the fall and winter seasons, a branch from the Mediterranean Sea also contributes, resulting in increased rainfall.