Showing 31 results for Vulnerability
Mis Sedigheh Hashemi, Dr Ahmad Taghdisi, Dr Farhad Azizpur,
Volume 8, Issue 4 (3-2022)
Abstract
Introduction
Rural areas are more vulnerable to earthquake hazards than urban areas but the vulnerability of rural areas has always been neglected and few studies are worrying about it. Given the importance of villages and played the crucial role in socio-economic development and national security, providing adequate housing for villagers and addressing the problems in this area, in particular, providing them with security and relieving their vulnerability are of particular importance. One of the policies of Iran to reduce the risk of damage; improvement and rehabilitation of rural housing by the Housing Foundation of the Islamic Revolution Which has become one of the most important strategies in Iran due to the extent of natural disasters and their financial and financial losses and their expectations beyond ensuring security against accidents are also a continuation of rural life. neyriz Township is subjected to major and minor faults that the existence of these faults and the probability of earthquake causes vulnerability of the villages of the region. The housing estate of the Islamic Revolution of the Islamic Republic of Iran, from 2004 to 2013, has provided 5255 villagers of more than 20 households with facilities for the renovation and renovation of houses. The number of facilities was paid to 66 villages of more than 20 households in the city and supervision of the construction process was carried out. So what seems to be important is the activity that the Housing Foundation has had in its housing estate, its impact on the rural areas, and how much it has been able to achieve resistance and stability in rural housing; in addition to what degree, they have been able to influence their satisfaction. Therefore, the present study addresses the vulnerability of rural dwellings. In this regard, vulnerability is initially studied then the satisfaction of the villagers is examined finally, the share of each vulnerability level criterion is measured on the satisfaction of the villagers and appropriate solutions.
Data and Methodology
The research methodology is based on its descriptive-analytical nature. Data gathering was conducted through surveying, library and field method. A small portion of the sample includes 230 households from 18 rural in the Neyriz Township. Reliability of the questionnaire was calculated using Cronbach Alpha (alpha = 0.79). In the qualitative section for the implementation of grounded theory, an interview was conducted with 40 villagers.
Results and Discussion
By studying the vulnerability of rural nursing homes in the Township of Neyriz, the villages of the studied villages are in an unfavorable position in terms of economic and social dimensions. Objective satisfaction indicators show that 51.8% of the villagers' homes were constructed responsive to concrete. 80.4% of the walls of the houses are made with bricks. The roofs of the houses are covered with 75% block and block. Of the studied rural households, 94.6% have personal housing and only 5.4% of the tenants. In the area of providing services in residential units, all the studied villages have water, electricity, telephone and 2.05 villagers are satisfied with the crop of agricultural products, parking lots, agricultural machinery and heating and cooling equipment for their housing.
Conclusion
Findings showed that the vulnerability of rural housing is not only physical and environmental in nature, but also in social, economic and institutional-organizational dimensions. Meanwhile, vulnerability in physical and environmental dimensions in the study area is lower than other dimensions. Therefore, the existence of unstable housing in rural areas has led to a decline in their quality of life. This situation is strongly influenced by internal and external factors and forces. The lack of financial support, the traditional housing structure, poor design, poor monitoring and enforcement, social constraints, lack of building facilities, weaknesses in government support and regulatory policies, and government institutions are among the main problems of rural dwellings.
According to interviews with villagers, the following solutions can be made to reduce rural housing problems:
- The costs of facilities and infrastructure are not at the expense of villagers. Therefore, the creation of continuous financial resources for councils and departments can be open.
- Reducing the problems and obstacles facing applicants for loan use (through increasing credit, decreasing profits and raising the age), providing welfare services and reducing the total poverty of the rural community, granting loans or with benefits and installments Low for women-headed households; increasing the number of borrowers and creating rural people's interest and motivation for living in the countryside.
- Preserving indigenous architecture, using indigenous materials, avoiding blind imitation of urban housing, etc., are unfortunately much neglected, and new rural houses have become homogeneous and adapted to the natural and physical environment of the countryside.
- In anti-poverty programs, the problems of villagers have been underestimated, which has led to their vulnerability. Therefore, investing in villages, creating complementary agricultural businesses, increasing production and, consequently, increasing rural incomes, can accelerate the growth and development of this sector.Energy saving is considered to be a problem with rural housing problems in terms of access to fossil fuels and mechanical equipment for heating and cooling buildings.
Key words: Vulnerability, pathology, Earthquake, Neyriz Township
Mis Vajihe Gholizade, Dr Amir Saffari, Dr Ali Ahmadabadi, Dr Amir Karam,
Volume 8, Issue 4 (1-2021)
Abstract
Introduction: Assessing the vulnerability and pollution of the aquifer is necessary for the management, development and allocation of land use, quality monitoring, prevention and protection of groundwater pollution. The purpose of this research is to identify and analyze the qualitative vulnerability of the Mashhad plain aquifer in order to monitor and manage underground water resources and prevent its future pollution.
Methodology: Mashhad plain is located in the northeast of Iran between Binaloud and Hezarmasjed mountains and in the watershed of the Kasfroud river, and its area is 2527 square kilometers. In this research, the vulnerability of the Mashhad Plain aquifer was evaluated with DRASTIC and SI models, and ArcGIS was used to analyze the parameters and prepare the vulnerability map. DRASTIC model is one of the overlap and index methods. In this method, the seven measurable parameters for the hydrogeological system include the depth of the groundwater level(D), net recharge(R), aquifer environment(A), soil environment(S), topography(T), Impact of the unsaturated Zone(I) and hydraulic conductivity(C) is used. The ratings for the sub-layers of each criterion vary from one to ten depending on their impact on the vulnerability potential. In SI method, five parameters of groundwater depth(D), net recharge (R), aquifer lithology(A), topography(T) and landuse(LU) are used for aquifer vulnerability. After preparing the SI model layers and weighting each of the layer classes using the functions available in the ArcGIS, the sensitivity index is obtained from the weighted sum of the mentioned parameters.
Conclusion: Study area is divided into four zones with very low vulnerability(21.85%), low(32.09%), medium to low(31.05%) and medium to high vulnerability(14.59%). Also, based on the results of the SI model, the study area is divided into five areas with very low vulnerability(0.4%), low(24.63%), medium to low(23.98%), medium to high(18.71%) and high vulnerability(32.25%). In general, the vulnerability of the aquifer increases from the southeast to the northwest.For verification, statistical method and calculation of correlation coefficient between vulnerability maps and TDS layer was used in TerrSet software and the results showed that both DRASTIC and SI models have high accuracy in zoning the vulnerability of Mashhad plain aquifer, so that the correlation coefficient of vulnerability maps with index The quality of TDS in Drastic model is (0.996) and in SI model (0.995); Therefore, the results of the following research can be used in environmental assessments and analysis of various pollutions and can be used as a basis for management decisions.
Hossein Kianpour, Soolmaz Dashti, Roshana Behbash,
Volume 9, Issue 1 (5-2022)
Abstract
Vulnerability assessment of Miangaran wetland ecosystem
To support the proper management of ecosystems, vulnerability analysis of ecosystems is very important. Vulnerability analysis of ecosystems provides information about weaknesses and capacity of the studied ecosystem for recovery after damage. Considering the degradation status of Miangaran wetland, vulnerability evaluation of this wetland is one of the most important management methods in the region. For this purpose, in this study, after identifying and evaluating the threatening factors of Miangaran wetland, these factors were scored using evaluation matrices. Then, the interaction between these values and threatening factors was examined and the vulnerability of wetland values was obtained by multiplying the scores of all studied factors. Finally, management solutions were presented to deal with the most important threatening factors. According to the results, the most vulnerability is to the hydrological and ecological values of the wetland. The highest effects of threats on the ecological value are also on the birds of Miangaran wetland. The results of the evaluation of Miangaran Wetland show that this wetland has a high potential for ecosystem functions of the wetland. These functions have been neglected in the planning and managing of wetlands at the local, regional and national levels. As a result, ecosystem-based management is suggested as the best management approach. The management in these areas should take action to prevent the vulnerability of Miangaran wetland. Also, the vulnerability evaluation method used in this study can provide a good understanding of the relationship between wetland functions and the resulting services for the management of the ecosystem of Miangaran Wetland.
Key words: Miangaran wetland, ecosystem management, vulnerability assessment
Dr. Jamal Mosaffaie, Dr. Amin Salehpour Jam, Dr. Mahmoudreza Tabatabaei,
Volume 9, Issue 3 (12-2022)
Abstract
Landslide risk assessment is essential for all landslide damage mitigation plans. The purpose of this research is to assess the risk of landslides in the Shahrood watershed of Qazvin province. First, the landslide susceptibility map was prepared using fuzzy operators. the landslide distribution map and also 11 effective factor layers including slope, slope direction, altitude, land use, lithology, distance to road, distance to stream, distance to fault, earthquake acceleration, precipitation, and maximum daily precipitation were first prepared. After determining the frequency ratio and fuzzy membership values for the map classes of different factors, the landslide susceptibility map was prepared using different gamma values. Then, after preparing the fuzzy map of vulnerability for different land use units, the amount of landslide risk was determined from the product of two maps of landslide susceptibility and vulnerability. In general, 104 landslides with a total area of 1401 hectares were recorded in this region, 70% of which were used for modeling (73 landslides with an area of 982 hectares) and the remaining 30% (31 landslides with an area of 418 hectares) were used to assess the accuracy. The evaluation results showed that the highest value of Qs index (equal to 1.34) belongs to the gamma equal to 0.93 and therefore this model has higher accuracy than other gamma values. The importance of features at risk ranges from 0.05 (no coverage) to 1 (residential and industrial areas). To deal with landslide damages, three general policies including suitable for development, prevention, and treatment were proposed, which should be applied based on the two factors of risk and vulnerability for different areas of landslide risk. Finally, in order to reduce landslide damages, suitable land uses for high-risk regions were introduced.
Dr Kiomars Maleki, Dr Mostafa Taleshi, Dr Mehdi , Dr Mohammad Raoof Heidari Far,
Volume 9, Issue 4 (3-2023)
Abstract
The results of pathological evaluation of seismic zones in the terrestrial space indicate a significant concentration of residential spaces, especially cities. It has been economic and human. Therefore, one of the desirable models in identifying, analyzing and reducing damage in urban spaces is to use the structural and functional framework of passive defense. In many recent studies, the subject of reducing earthquake damage in the territory of the physical-spatial field has been to increase the building's resistance to earthquakes. While this study by recognizing environmental components, physical-spatial, social, economic and effective indicators in each component (45 indicators) to determine the pathology and risk areas of earthquakes in a comprehensive and desirable and based on that reduction strategies Redefines risk. In other words, by recognizing and analyzing the basic concept of threat network and risk ring with passive defense approach in earthquake assessment and vulnerability in Kermanshah metropolis to form the required database structure in appropriate software environment, appropriate policy and urban crisis management measures It is designed in proportion to the earthquake risk.
Fateme Emadoddin, Dr Amir Safari,
Volume 9, Issue 4 (3-2023)
Abstract
Vulnerability assessment of karst aquifer using COP and PI model (Case study: Bisotun and Paraw aquifers)
Introduction
Drinking karst water resources, especially in arid and semi-arid regions, like Iran, are considered as valuable and strategic water resources. A sharp decrease in rainfall reduces the quality and quantity of karst water sources (Christensen et al., 2007). On the other hand, urban and industrial development, which is accompanied by the increase in population growth, increases the risk of underground water pollution caused by the dumping of chemicals, waste and change of use (McDonald et al., 2011). Protection of karst aquifer is one of the most important measures in the management of karst water resources due to its vulnerability and high sensitivity to pollution (Khoshakhlagh et al., 2014, Afrasiabian, 2007). Therefore, With the advancement of geographic information system technology, rapid progress was made in the ability to identify and model groundwater pollution, as well as the vulnerability of water sources from these pollutants (Babiker et al., 2004, Rahman, 2008). The pollution potential decreases from the center to the periphery (Saffari et al., 2021).
Materials and methods
In this study to evaluate the vulnerability of Bisotun and Paraw aquifer which is karstically developed and has, crack and fissure and various landforms; COP and PI vulnerability models have been used to identify areas at risk of contamination. The COP model includes three main factors including concentration of flow (C), overlaying layers (O) and precipitation (P). Factor C, which indicates surface features (Sf), slope and vegetation (Sv). It was obtained between 0.8-0.0 in 5 classes. From the overlap of the subfactores soil, layer index and lithology, the O factor map was prepared in three classes, including class 2 with low protection value, 2-4 with medium protection value and 4-8 with high protection value. The P factor, which is the temporal distribution of precipitation along with the intensity and duration of precipitation, can show the ability of precipitation to transfer pollutants from the surface to the underground water. P factor was 0.8 in 2 layers in the northwest of the study area and 0.8-0.9 with low protection value. Furthermore, top Soil, precipitation, net recharge, fracture density, bedrock and lithology maps were used for the protective cover factor (P) in the PI model. The zoning of the P factor showed 2 classes such as very low and low most of the study area is in the low class. The infiltration condition factor (I) using the characteristics of the soil, the slope layer, and the land use in four layers showed high, aamedium, low, very low, which due to the high slope of the area of the high layer has the highest dispersion, which causes the reduction of the protective cover.
Results and discussion
Consequently, COP vulnerability map in 5 classes with very high vulnerability (0-0.5) equal to 38774.74 hectares (41.4%) and very low vulnerability (4-9-4) with 57.86 hectares (0.06%) of the largest and smallest area respectively. Also, the PI vulnerability map of the combination of these two factors showed very high vulnerability with the largest area of about 68,783 hectares and 72.9% scattered throughout the study area and the high vulnerability class with an area of about 25,526 hectares and 27%.
Conclusion
The results of this research showed that the simulation performance of each COP and PI vulnerability model is closely related to the amount of pollution in the environment. It seems that the COP vulnerability model can better and more accurately showed the level of vulnerability in the karst aquifers of Bisotun and Paraw.
Keywords: karst aquifer, Bisotun and Paraw, COP model, PI model, vulnerability.
Masoomeh Hashemi, Ezatallah Ghanavati, Ali Ahmadabadi, Oveis Torabi, Abdollah Mozafari,
Volume 10, Issue 2 (9-2023)
Abstract
Introduction
Earthquakes as one of the most important natural disasters on earth, have always caused irreparable damage to human settlements in a short period of time. Severe earthquakes have led to the idea of developing an infrastructure plan to reduce the risks and damages caused by it. The urban water supply system is the most important critical infrastructure that is usually damaged by natural disasters, particularly earthquakes and floods; hence, the function of the pipelines of the water system determines the degree of resilience and design of the infrastructure against multiple natural and man-made hazards. Considering the inability to prevent earthquakes and the inability of experts to accurately predict the time it is necessary to know the status of earthquake-structure and seismicity in Tehran to determine the amount of earthquake risk in order to make the necessary planning for structural reinforcement. Theoretical and field studies of tectonic seismicity in the Tehran area show that this city is located on an earthquake-prone area around the active and important faults of Masha, north of Tehran, Rey and Kahrizak. The occurrence of 20 relatively severe earthquakes illustrates this claim. Regarding the location of faults in Tehran city, it is necessary to assess the vulnerability of Tehran water facilities.
Research Methodology
The present study is a practical-analytic one. Considering the severity of earthquake damages, it is necessary to conduct earthquake hazard zonation studies in different urban areas and to determine important indicators of damage assessment such as maximum ground acceleration, maximum ground speed, maximum ground displacement. Three indices were considered for mapping earthquake seismic zones and their integration into the GIS presented a seismic hazard map. In the analysis of earthquake risk, it is necessary to evaluate two indicators of risk and vulnerability. To prepare the general hazard power mapping the weights obtained from the ANP model were applied to the existing raster layers via the Raster Calculator command. In this way, the standardized layers are multiplied separately by their respective weights and finally overlapped. In order to evaluate the vulnerability, a series of evaluation indices are introduced and ANP techniques are used. The relative value of each index is then calculated using the multivariate approach using the SAW technique. In order to calculate the earthquake risk based on R = H * V relation, the values of these two components were multiplied. This calculation was performed in GIS software on the risk and vulnerability raster layer and the final result of this calculation was displayed on the map.
Description and interpretation of results
In this study, we tried to estimate the relative risk and risk of seismic hazard on the water supply lines in Tehran, using available data and scientific methods, and map the risk level. These lines should be prepared first by the amount of earthquake hazard risk and then by the risk map, to estimate the earthquake risk on the water supply network. first the earthquake risk then the status of the hazard lines should be calculated. The vulnerability of the water supply lines was calculated using the ANP model by multiplying the total potential hazard risk then substrate transfer network vulnerability risk map obtained transmission network. The highest risk was in the west and north of Tehran. The maps showed the risk potential and the vulnerability of the lines. These areas had high seismic potential and the density of the lines was higher in these areas. Water transmission facilities are at risk and earthquake hazards may be affected by damage to the transmission lines, drinking water to a large population will be difficult, as well as performing necessary zoning to prevent future expansion of the facility in place. These analyzes are a prelude to applying corrective techniques to pipelines to reduce their vulnerability and prevent newly created pipelines from locating in vulnerable areas. Since the results of this study are risk maps along the route of the water supply lines, so in order to prepare a risk control program, we can identify the high risk pipeline map and identify the pipeline vulnerability. And, depending on its location, provided an appropriate prevention and control plan for the conditions surrounding the pipeline environment.
Javad Sadidi, Hassan Ahmadi, . Ramin Rezae Shahabi, Amir Pishva, Omid Kheyri, Godratallah Nooraie,
Volume 10, Issue 3 (9-2023)
Abstract
The pervasiveness of the concept of vulnerability in various dimensions has led to the emergence of the theory of vulnerability in the spatial sciences. According to the theory of vulnerability, in any given space, there is a coefficient of vulnerability, while the levels and amplitude of safety are not evenly distributed on the surface of that space. Residential use is one of the most important and main uses in the urban land use system, and safety management and attention to its defense requirements are very important due to the high population density in large cities. The present study is in the field of assessing the vulnerability of residential uses against external threats with a passive urban defense approach in District 10 of Tehran, which was conducted in the form of spatial studies and by implementing an analytical model in three steps. First, the principles and requirements of passive defense were identified and classified into three groups of structural, demographic and spatial parameters, and using the questionnaire and expert survey tools, the priorities of passive defense principles in relation to residential spaces were determined. Then, based on the network analysis process, the weight of each criterion was determined and the weight of the ANP model was applied to the spatial layers of the region in ArcGIS software. The results of the model showed that in terms of structural indicators, more than 78% of residential units in the region are in the group of structures with high vulnerability and in terms of demographic indicators, in 88% of residential units in case of external threats, the level of vulnerability is high. In terms of spatial indicators, more than 92% of residential spaces are adjacent to several incompatible uses and have the highest vulnerability. In general, the results of overlapping layers showed that more than 86% of residential units in the area are located in vulnerable zones and the vulnerability of residential units in these zones is very high.
Fateme Emadoddin, Dr Ali Ahmadabadi, Seyed Morovat Eftekhari, Masumeh Asadi Gandomani,
Volume 10, Issue 3 (9-2023)
Abstract
Introduction: Land subsidence is one of the environmental hazards that threatens most countries today, including the majority of Iran's plains (Ranjabr and Jafari, 2010). Damages caused by subsidence can be direct or indirect. Infrastructural effects are direct and indirect effects of subsidence, but economic, social and environmental effects are indirect effects of subsidence (Bucx, et al., 2015). The environmental effects of subsidence are related to other effects of subsidence, including the infrastructural, economic and social effects of subsidence. The southwest plain of Tehran is considered one of the most important plains of Iran due to its large areas of residential, agricultural and industrial lands from various aspects, especially economic, political and social. The subsidence of the Tehran plain was first noticed by the measurements of the country's mapping organization in the 1370s. Since 2004, the responsibility of investigating this phenomenon in the plains of Tehran was entrusted to the Organization of Geology and Mineral Explorations of the country. Although several researches have been done in the field of subsidence factors, amount and zoning. In the field of estimation of subsidence and changes in water level, spatial correlation of subsidence with changes in water level and estimation of vulnerability due to subsidence according to the density of population, settlements and facilities in the southwestern plain of Tehran has not been done.
Methodology: In the current research, we will analyze and estimate the spatial regression of the subsidence phenomenon by InSAR technique with water level changes from 2005 to 2017, as well as the environmental effects of subsidence in the southwest plain of Tehran by using Quadratic analysis method (O’Sullivan and Unwin, 2010). The criteria map of the current research is overlapped using the ANP method (Ahmedabadi and Ghasemi, 2015) weighting and finally with the SAW method (Emaduddin et al., 2014) in the Arc GIS 10.8 software, and the vulnerability map due to land subsidence in the study area is prepared.
Results: The average subsidence in 12 years is about 9.9 cm per year. Average subsidence has occurred in four main zones. Maximum and minimum subsidence have been observed in B (near the Sabashahr) and D (in east of plain) zones respectively. The results of the interpolation of the depth of the underground water in the study area indicate that the general trend of increasing the depth from the south (10 meter) to the north (more than 90 meter) of the plain. The results of spatial correlation showed that there is a significant direct relationship between the spatial layer of the average subsidence rate of Tehran Plain and the spatial data of the underground water level, and the R value is equal to 0.61. The distribution map of the underground water depth of the study area in the form of Quadrat analysis shows that in the main part of the plain, the depth of underground water is at an average level. The general trend of changes in the level of underground water is decreasing from northwest to southeast and is in 5 levels. The distribution of the networks shows that the rivers have three linear trends from north and northwest to south; their dispersion is mostly in the center of the study area. The flood rate is higher in the central plain networks. In study area, there are important arterial roads such as Tehran-Qom highway, Tehran-Saveh highway and Tehran Azadegan highway. The southern and northeastern areas of the study area are urban settlements such as Islamshahr, the 18th and 19th districts of Tehran Municipality and other residential areas such as Sabashahr. The major part of the region has fertile soil and the occurrence of subsidence can have negative effects on the fertility and texture of the soil in the study area. The results of vulnerability analysis due to subsidence show that there are 5 vulnerability classes in the study area including very low, low, medium, high and very high.
Conclusions: All in all most of the study areas (central, northern and western networks) are in medium, high and very high vulnerability. About 14,600 hectares of the study area are in medium vulnerability. Which is continuous from the west to the east of the study area. Most of the urban infrastructures are moderately vulnerable to subsidence. About 17,000 hectares of the southwestern plain of Tehran are very vulnerable. That more than half of the area of this area is covered by settlements and urban infrastructures. Therefore, the phenomenon of subsidence causes irreparable damage to the settlements and infrastructures in the southwest plain.
Mehran Maghsoudi, Elham Heidary,
Volume 10, Issue 4 (12-2023)
Abstract
Geological diversity has created a new branch of the tourism industry called geotourism , where geological and geomorphological features are explored . The main focus of geotourism on geological elements includes two items, form and process . There is a set of geological forms and processes in places , which are called geosites . This has given rise to a new branch of tourism called geotourism , which examines places that have the ability to attract tourists and management aspects that can help the local community for economic development. In the first stage , it is very important to know the abilities and characteristics of the studied area . Scientific, tourism and educational evaluation of geosites in the region is the basis for optimal exploitation and sustainable development. In recent years, more attention has been paid to the Garmsar region, which has led to the development of geotourism. The impact of tourists and mines that have been created by humans, the Tastkan caves that have changed the strength of the salt caves, and also the role of natural factors, have all led to the environment's reaction
Dr. Habibollah Fasihi, Dr. Taher Parizadi,
Volume 10, Issue 4 (12-2023)
Abstract