Mostafa Karampoor, Yeganeh Khamoshian, Hamed Heidari, Fatemeh Amraei,
Volume 8, Issue 2 (9-2021)
Abstract
Air pollution, as one of the most important environmental hazards in urban areas, is closely related to weather conditions. Today, pollution in metropolitan areas has become an important issue that requires the study and presentation of practical solutions to improve living conditions in this area. Therefore, understanding the relationship between synoptic systems and air pollutants helps a lot in how to solve environmental problems and future planning. Therefore, in this study, compression algorithms of carbon monoxide emission and transfer from domestic and foreign sources were analyzed. For this purpose, GEOS-5 / GMAO / NASA satellite images were used. The results showed that the highest amount of pollution from the seasonal point of view is related to the cold and early morning seasons and the lowest is related to the early afternoon and hot season of the year. And Khuzestan are densely populated carbon monoxide cores. Low pressures of the eastern Mediterranean play an important role in reducing pollutants in the southwest of the country and in the south of the country, under the influence of atmospheric currents from the topographic cut of Bandar Abbas, air streams polluted with carbon monoxide are able to penetrate into the interior to the southern half of Kerman. Increased by low pressure systems in Afghanistan and Pakistan. The Zagros Mountains also play an important role in preventing the entry of pollutants produced by western neighbors into Iran. In summer, Iran is polluted by carbon monoxide carriers by monsoon currents from central and southern Africa to Iran and has caused a lot of pollution
Zynab Dolatshahi, Mehry Akbari, Bohloul Alijani, Darioush Yarahmadi, Meysam Toulabi Nejad,
Volume 10, Issue 3 (9-2023)
Abstract
This study was aimed at examining the types of inversion and their severity using the thermodynamic indices of the atmosphere such as SI, LI, KI and TT at Bandar Abbas Station for 2010-2020. In this study, Radioosvand data at the Bandar Abbas Station was obtained and used from the University of Wioming for the last 11 years (3.5 local) during the last 11 years (2010 to 2020). The results of the analysis showed that the average number of inversion phenomenon in Bandar Abbas was 501 cases per year, as in some days several types of inversion were observed at different altitude. Of these inversion, about 31.6 % are related to radiation temperature inversion, 4.3 % front, and another 64.1 % for subsidence inversion. Due to the air session underneath, the share of subsidence inversions is more than other types of inversion. In the meantime, the most severe inversion of subsidence was 1354 and the weakest inversions were with 29 cases and fronts. In general, the long -term average intensity coefficient of inversion of Bandar Abbas station with a coefficient of 0.062 indicates that the intensity of the city's inversion is mostly extremely severe, which can be very destructive effects both environmentally and physical health in the city's residents. Bandar Abbas follow. The correlation between the inversion elements also showed that by reducing the thickness of the inversion layer, the intensity of temperature inversion also increased.