Search published articles


Showing 2 results for Damage

Mohammad Hajipour, Vahid Riahi, Golsar Hajipour,
Volume 6, Issue 1 (5-2019)
Abstract

Introduction

 There are two questions with all programs and efforts to industry development in Iran: I) How much is rate of environmental hazard of industries in each Iran regions? II) How much is rate of capital production of industrial sector to environmental damages in regions of Iran? 

 

Explanation and Interpretation of the Results

In recent years (2009-13), despite a reduction in the number of industrial workshops in the country as a whole, pollution and ecological damage to industries had more than doubled in the past; On the other hand, industries has been more conflict with the environment increasingly in Iran and has led to the growth of human environment hazards with increase of damage to natural environment. Also, from a regional point of view, wherever more industry is not more damage to environment by industry necessarily. Factors such as “obsolete instruments in industry”, “low level of technology”, “insufficient skills and expertise of the activists in industry” and “Inattention of managers and industrialists to environmental health” has been causes damage growing to environment. Space pattern suggests industrial sector risks accumulated within South West of Iran. As well as according to spatial changes trend, the risks are drawn towards central regions of the country. Among the provinces, Markazi province has been damage most to environment than any one million riyals added value of industry sector activities. As well as provinces such as Mazandaran, Bushehr, Fars, Isfahan, Ardebil and West Azarbaijan has been next ranks. Finally, it can be concluded that the environment health is not important for capital production from industrial sector of in the regions.


Dr. Javad Sadidi, Mr. Mansour Bayazidi, Dr. Hani Rezayan, Dr. Hadi Fadaei,
Volume 8, Issue 4 (3-2022)
Abstract

Designing a Volunteer Geographic Information-based service for rapid earth quake damages estimation


Introduction
The advent of Web 2.0 enables the users to interact and prepare free unlimited real time data. This advantage leads us to exploit Volunteer Geographic Information (VGI) for real time crisis management. Traditional estimation methods for earthquake damages are expensive and time consuming. In contrast, volunteer and web-based service are near real time with almost no cost services. the lack of accessible real time data collection services causes delayed-emergency responses for disasters like an earthquake. This drawback is critical when we encounter a problem like buried people with valuable seconds for emergency rescue operation.
The current research aims to design and implement a web-based volunteer data collection service for rapid estimation of earthquake damages and number of buried people.

Methodology
To investigate the capacity of VGI in rapid estimation of earthquake, a technical frame work based on the web technologies has been programmed and implemented. The designed service is comprised of server and client sides.
The client side is a two-side browser-based service includes volunteers (users) and managers pages. On the user page, volunteers have a web page to enter and fill in the blank forms and taking a photograph of the target building and compare it with pictures. They watch the sample pictures in different level of damages and compare their building with the samples and give a grade of the most similar picture with their building. This grading process leads the server to analysis and classify the incoming data and create the heatmaps for managers. On the managers page two online discrete heatmaps for the both earthquake damages and buried people are displayed. In fact, the heatmaps present the online and real time quantitative situation of the building damages and buried persons as hot spots. These hotspots have the first priority for giving emergency services. The manager page also exploits query tools to request different level of details and classes from the server side.
The server side is responsible for receiving, saving, spatial analysis and transmission of the requested result to the client side. This task is carried out by the exchange side. As the citizens are entered to the browser-based service and fill in the blank forms for building damages based on the mentioned guideline and report the buried people, These forms are transmitted to the server side and a geo-server performs spatial analysis including Heatmap, distance and clustering analysis. Then, a real time damage and buried people map are prepared and delivered to the client side. The server updates the created maps whenever a new data is submitted. By this, a real time damage and buried people maps are accessible for official managers to conduct a goal-oriented emergency operation and a preliminary earth quake damages on city building blocks.
After the technical frame work has been designed, it was tested in Oshanvieh city by 132 volunteers on the scene for an earthquake.

Results and discussion
To investigate the capability of volunteer geographic information for earth quake afterwards, the designed service mentioned in the methodology was utilized on Oshnavieh city. It was assumed that an earthquake has occurred. 132 volunteers participated for the data collection process. According to the crisis management organization experts, 102 reports of the total 132 reports are correct that shows the accuracy of 76.52 percent. Besides the building damage level based on the defined guideline, the citizens also select their vital needs after the earthquake.
  the most requested vital needs are warm stuffs, medicine, water and foods respectively. Unfortunately, the participation rate is ranged from some seconds after the earthquake to three days. This means that some citizens have filled and transmitted their data three days after the earthquake.
In the following, a comparison between the designed service and traditional earthquake damage estimation methods (in situ) was carried out. The result shows that field-based methods for a city like Oshnavieh need about 20 days. However, the designed volunteer-based service what is programmed and implemented in the current research does this job by 3 days.

Conclusion
As the results show, the proposed service designed in this research implements the damage estimation process 6.5 times faster than the governmental procedures. This proves the efficiency of the research achievements. Besides the velocity, traditional damage estimation methods are expensive compare to volunteer-based data collection and processing which are almost free, scalable and pervasive.

Keywords: Volunteer Geographic Information (VGI), earthquake damage estimation, heatmap, oshnavieh city.



 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb