Search published articles


Showing 2 results for Extreme Temperature

Mr Alireza Sadeghinia, Mrs Somayeh Rafati, Mr Mehdi Sedaghat,
Volume 8, Issue 4 (3-2022)
Abstract

Introduction
Climate change is the greatest price society is paying for decades of environmental neglect. The impact of global warming is most visible in the rising threat of climate-related natural disasters. Globally, meteorological disasters more than doubled, from an average of forty-five events a year to almost 120 events a year (Vinod, 2017). Climate change refers to changes in the distributional properties of climate characteristics like temperature and precipitation that persist across decades (Field et al., 2014). Because precipitation is related to temperature, scientists often focus on changes in global temperature as an indicator of climate change. Valipour et al. (2021) reported the mean of monthly the global mean surface temperature (GMST) anomalies in 2000–2019 is 0.54 C higher than that in 1961–1990. Many studies have been done on climate change in Iran. These studies have mostly studied the mean and extreme temperature trends (Alijani et al., 2011; Masoudian and Darand, 2012). In general, the results of previous studies showed that the statistics of mean, maximum and minimum air temperature in most parts of the Iranian plateau have increased in recent decades. Also, the increase of minimum temperature is greater than maximum temperature.
A review of the research background shows that we need to understand more about regional climate change in Iran. Therefore, present study performs the climate change of 14 extreme temperature indices using multivariate statistical methods at the regional scale.

Data and methodology
Historical climate observations including daily maximum and minimum temperature were obtained from the Iranian Meteorology Organization for the period 1968 to 2017 at 39 stations. In this paper, 14 extreme temperature indices defined by ETCCDI were analyzed. The indices are as follows: (1) Annual maxima of daily maximum temperature (TXx); (2) Annual maxima of daily minimum temperature (TNx); (3) Annual minima of daily maximum temperature (TXn); (4) Annual minima of daily minimum temperature (TNn); (5) Cold nights (TN10p); (6) Cold days (TX10p); (7) Warm night (TN90p); (8) Warm day (TX90p); (9) Frost days (FD); (10) Icing days (ID); (11) Summer day (SU); (12) Tropical nights (TR); (13) The warm spell duration index (WSDI) and (14) the cold spell duration index (CSDI). The extreme temperature indices were extracted using R software environment, RclimDex extension. The Mann–Kendall Test and Sen’s Slope Method was employed to assess the trends in 14 extreme temperature indices. To identify homogeneous groups of stations with similar annual thermal regimes, Principal Component analysis (PCA) and Clustering (CL) was applied. Pearson correlation coefficient was used to investigate the relationship between height and trend slope.

Result
All the extreme temperature intensity indices (TXx, TNx, TXn, and TNn) showed increasing trends during 1968 to 2017. The increasing trends of TXx, TNx, TXn, and TNn were 0.2, 0.3, 0.44, and 0.5 ° C per decade, respectively. These results indicated that the extreme warm events increased and the extreme cold events decreased. The average of the extreme temperature frequency indices over Iran showed that the frequency of warm night (TN90p) and warm day (TX90p) significantly increased with a rate of 6.9 and 4.2 day per decade, respectively. Also, the frequency of cold night (TN10p) and cold day (TX10p) significantly fell with a decrease rate of 3.8 and 3.8 day per decade, respectively. The frequency of warm nights (TN90p) was higher than that of warm days (TX90p). The result indicated that the trend of nighttime extremes were stronger than those for daytime extremes. The average of frost days (FD) and icing days (ID) indices over Iran showed decreasing trends during 1968 to 2017 with rates of 3 and 1.1 d per decade, respectively. While, the averaged of summer days (SU) and tropical days (TR) indices over Iran showed increasing trends with rates of 4.4 and 6.4 day per decade, respectively. The warm spell duration index (WSDI) indices showed a clear increase, with a rate of 2.1 per decade. In contrast the cold spell duration index (CSDI) showed a significant decrease, with a rate of 1.7 per decade. In general, the cold indices displayed decreasing trends, whereas the warm indices displayed increasing trends over most of Iran. Pearson correlation coefficient between height and Sen’s Slope was estimated to be equal to -0.62 (p < 0.01). In general, the results of this study showed that there is a negative correlation between the elevation factor and the Sen’s Slope of warm extreme indices. That is, as the altitude decreases, the Sen’s Slope increases. Therefore, the stations located in low altitude have experienced stronger increasing trends than in high altitude. The area of ​​Iran was classified into four clusters using PCA and CL methods. Cluster 1 has experienced the strongest increasing trends. The average height of cluster 1 is 535 meters. Approximately 38% of the studied stations were located in cluster 1. Cluster 2 showed a moderate heating trends. 33% of the stations were located in cluster 2. Most of the stations of cluster 2 are located in the northwest and west of Iran. Cluster 3 showed a weak increasing trends compared to clusters 1 and 2. The stations of cluster 3 did not show a special geographical concentration and were scattered in all parts of Iran. 18% of the studied stations are located in cluster 3. The stations of Cluster 4, have experienced weak decreasing trends, which was different from the other three clusters

Conclusion
In this study we analyzed the climate change of extreme temperature indices in Iran. The result showed that the frequency of warm nights, warm days, summer days and tropical days increased. Also, the frequency of cold nights, cold days, Frost days and icing days decreased. The warm spell duration index showed a clear increase. In contrast the cold spell duration index showed a significant decrease. In general, the extreme warm events increased and the extreme cold events decreased over most of Iran. There is a negative correlation between the elevation factor and the Sen’s Slope of extreme warm indices (R = -0.62). Therefore, the stations located in low altitude have experienced stronger increasing trends than in high altitude. The area of ​​Iran was classified into four clusters using PCA and CL methods. Cluster 1 has experienced the strongest increasing trends. The average height of cluster 1 is 535 meters. Therefore, the most heating have occurred in Low-lying areas of Iran. Cluster 2 and Cluster 3 showed a moderate and weak heating trends, respectively. The stations of Cluster 4, have not experienced clear trends.

Key words: climate change; Extreme temperature; clustering; Iran



 
Leila Ahadi, Hossein Asakereh, Younes Khosravi,
Volume 10, Issue 2 (9-2023)
Abstract

Simulation of Zanjan temperature trends based on climate scenarios and artificial neural network method

Abstract
Severe climate changes (and global warming) in recent years have led to changes in weather patterns and the emergence of climate anomalies in most parts of the world. The process of climate change, especially temperature changes, is one of the most important challenges in the field of earth sciences and environmental sciences. Any change in the temperature characteristics, as one of the important climatic elements of any region, causes a change in the climatic structure of that region. The summary of the investigated experimental models on climate change shows that if the concentration of greenhouse gases increases in the same way, the average temperature of the earth will increase dangerously in the near future. More than 70% of the world's CO2 emissions are attributed to cities. It is expected that with the continuation of the urbanization process, the amount of greenhouse gases will increase. According to the fifth report of the International Panel on Climate Change, the average global temperature has increased by 0.85 degrees Celsius during 1880-2012. Therefore, knowing the temperature changes and trends in environmental planning based on the climate knowledge of each point and region seems essential. For this reason, the present study simulates the daily temperature (minimum, maximum and average) of Zanjan until the year 2100.

Research Methods
The method of conducting the research is descriptive-analytical and the method of collecting data is library (documents). To check the temperature of Zanjan city, the minimum, maximum and average daily temperature data from Hamdeed station of Zanjan city during the period of 1961-2021 were used. The data of general atmospheric circulation model was used to simulate climate variables (minimum, average and maximum temperature) using artificial neural network and climate scenarios in future periods. The output variables in this study are minimum, maximum and average daily temperature. Therefore, three neural network models were selected. For model simulation, model inputs (independent variables) need to be selected from among 26 atmospheric variables. Therefore, two methods of progressive and step-by-step elimination were chosen to determine the inputs of the model. In these methods, climate variables that have the highest correlation with minimum, maximum and average daily temperature were selected. By using RCP2.6, RCP4.5 and RCP8.5 scenarios, variables were simulated until the year 2100. Markov chain model was used to check the possibility of occurrence of extreme temperatures of the simulated values.

results
According to the RCP2.6, RCP4.5 and RCP8.5 scenarios and the simulation made by the neural network model, it is possible that on average the minimum temperature will be 3.6 degrees Celsius, the average temperature will be 3.3 degrees Celsius and the maximum temperature will be 2.7 degrees Celsius. Celsius will rise. The monthly review of the simulated data for all scenarios and the observed data of the studied variables shows that the average minimum, average and maximum temperatures in January and February, which are the coldest months of the year, will increase the most and become warmer. While the average minimum temperature in August, the average temperature in April and the maximum temperature in October will have the least increase. According to the simulated seasonal temperature table based on all scenarios, it was found that the average minimum, average and maximum temperature observed with the maximum simulated conditions were 6.9, 5.5 and 5.4 respectively in the winter season, and 3.3 in the spring season. 4, 2.3 and 3, in the summer season it increases by 3.3, 3.4 and 1.4 and in the autumn season it increases by 4.6, 4.5 and zero degrees. The frequency of extreme temperatures observed in all three variables of minimum, average and maximum temperature for the 25th and 75th quartiles is less than the number of occurrences of extreme temperatures simulated in all three scenarios. Based on this, all three variables will increase and there will be fewer cold periods. An increase in night temperature and average temperature in winter season and maximum temperature in summer season will occur more than other seasons. The difference between day and night temperature will be less in autumn and summer. Also, all seasons, especially the summer season, will be hotter and the occurrence of extreme temperatures is increasing for the coming years.

Keywords: climate scenarios, simulation, extreme temperatures, artificial neural network, Zanjan



 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb