Abstract
Coastal areas are dynamic and complex multi-function systems. A wide number of often conflicting human socio-economic activities occur in these areas. These include urbanization, tourism and recreational activities, industrial production, energy production and delivering, port activities, shipping, and agriculture. Coastal systems are also characterized by important ecological and natural values; their high habitat and biological diversity is fundamental to sustain coastal processes and provide ecosystem services which are essential also for human well-being. Human activities often conflict with the need to preserve natural coastal systems and their ecological processes.
One of the most important applied problems in coastal geology today is determining the physical response of the coastline to sea-level rise. Predicting shoreline retreat and land loss rates is critical to planning future coastal zone management strategies and assessing biological impacts due to habitat changes or destruction. Presently, long-term (>50 years) coastal planning and decision-making has been done piecemeal, if at all, for the nation's shoreline. Consequently, facilities are being located and entire communities are being developed without adequate consideration of the potential costs of protecting or relocating them from sea-level rise-related erosion, flooding and storm damage.
Research on major natural disasters and related technologies has become an important subject in geography and its application. The complexity analysis of the issue is possible in a system approach to theoretical and applied geography also in the integrity of physical and human geography.
Due to the Caspian Sea water-level fluctuation in coastal zone of Babolsar which happens very quickly in decade scale, the observance of safety element will be possible in light of the integrated coastal zone management with determine of sea frontage. In this context, geography and especially geomorphology is a main basic in this kind of coastal management.
Detection of sea level fluctuations causing morphological changes in the earth surface and damage to facilities, clarifies the necessary of the present research to study the role of geomorphological indices in Babolsar coast zone constructions. The Coastal Vulnerability Index (CVI) is one of the most commonly used and simple methods to assess coastal vulnerability to sea level rise, in particular due to erosion and/or inundation. The CVI provides a simple numerical basis for ranking sections of coastline in terms of their potential for change that can be used by managers to identify regions where risks may be relatively high. The CVI results can be displayed on maps to highlight regions where the factors that contribute to shoreline changes may have the greatest potential to contribute to changes to shoreline retreat.
In this study, coastal vulnerability index (CVI) is used as effective geomorphic index on Babolsar coast zone constructions. In first, primary and secondary vertical frontages were detect using topographic data (digital elevation model with cell size 10-meter) and Caspian Sea water-level fluctuations.
The primary vertical frontage includes areas which have the lower height of -24.7 meters and secondary vertical frontage consists of areas which are placed between -24.7 and -23.5 meters. Following this issue, within the primary and secondary vertical frontage, coastal vulnerability index was performed based on five parameters, elevation, slope, landform, land use and distance from main road. According to the coastal vulnerability based on natural (NCVI), human (HCVI) and total vulnerability index (TCVI), large parts of the Babolsar coastal zone (especially in Fereidoonkenar and Babolsar city areas) placed in classes of high and very high vulnerability.
With respect to detection of the primary (level -24.7 m) and secondary (from level -24.7 to -23.5 m) frontages in Babolsar township area, 345 and 7177 hectares of the township lands are located in the primary and secondary vertical frontages, respectively. The most area of the township land uses in primary frontage belongs to natural structures that have 153 hectares of area. Survey of lands distribution in the height of -24.7 to -23.5 m (secondary vertical frontage) shows that agriculture land use has the most extent in this area; the area of this land use is 5293 hectares that equivalent to 74 percent of all lands which are located in the secondary frontage. Urban and industrial structures have 45 and 522 hectares of area in the primary and secondary frontages of Caspian Sea in Babolsar Township, respectively.
Spatial analysis as the main approach of geography was reviewed and searched through its historical development. The results of this exploratory research showed that this approach was born after the Second World War due to the overall interest of geographers to develop universal theories and laws. The advocators of this field believed that the old regional geography was not able to develop a scientific and applied knowledge. The main motivation of the development of the spatial analysis was the quantitative revolution of the 1960’s which was triggered by the article published by Shaeffer in 1953. This was followed by some prominent geographers such as Bungeh, Ulman, Barry, Hagget, Chorley and others. Bungeh and Harvey strengthened the philosophical foundation of spatial analysis and others such as Hagget , Chorley and Hajestrand published important books in the field of quantitative geography. The main objective of spatial analysis is to analyze the distributions through the identification of their global and local structures and reasoning these structures by their spatial relationship with other distributions. In this regard it uses quantitative data and mathematical language to achieve the spatial theories and laws.
The spatial analysis studies the spatial distributions and structures. These are the entities that are not subject to the human interpretation and thinking. This approach is true in the both physical and human geography. The knowledge it tries to achieve is the theories and laws about the spatial distributions. The methodology of spatial analysis is the quantitative methods such as experiment and survey. Thus in terms of ontology the entities of spatial analysis are independent of human mind and objective. The spatial characteristics of distributions are not constructed but discovered. The methodology used in spatial analysis is quantitative and objective including some methods such as experiment and survey. In 1980 and onward, human geography tried to move toward qualitative methods such hermeneutics but during 21st century all branches of geography are using quantitative methods more frequently than qualitative ones; but the use of the combined version of quantitative and qualitative methods is becoming more frequent day by day.
The introduction of Geographic Information System as the operational environment for spatial analysis works the approach has become more widespread and dominant. Geographers are now able to analyze more spatial data and discover more spatial theories to solve the spatial problems. GIS is the main tool for spatial analysis and by introducing the science of geostatistics has improved the scientific and applied power of spatial analysis. The application of quantitative geography including geostatistics and GIS requires improved knowledge of mathematics, geometry and statistics; the main language of today geography. The spatial analysis covers the important topics of geography including spatial distributions, regions, spatial relations especially the relation between human and environment, spatial structures, spatial reasoning, interpolation, and the most important topic of spatial planning. The spatial analysis is the only scientific field to define and develop spatial planning. With correct and logic spatial planning there won’t be any environmental hazards. Because in any region all human settlements and activities are planned according the potentials of the region.
Page 1 from 1 |
© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts
Designed & Developed by : Yektaweb