Search published articles


Showing 5 results for Geography

Seyed Hassan Sadogh, Khabat Derafshi,
Volume 1, Issue 3 (10-2014)
Abstract

Abstract

Coastal areas are dynamic and complex multi-function systems. A wide number of often conflicting human socio-economic activities occur in these areas. These include urbanization, tourism and recreational activities, industrial production, energy production and delivering, port activities, shipping, and agriculture. Coastal systems are also characterized by important ecological and natural values; their high habitat and biological diversity is fundamental to sustain coastal processes and provide ecosystem services which are essential also for human well-being. Human activities often conflict with the need to preserve natural coastal systems and their ecological processes.

   One of the most important applied problems in coastal geology today is determining the physical response of the coastline to sea-level rise. Predicting shoreline retreat and land loss rates is critical to planning future coastal zone management strategies and assessing biological impacts due to habitat changes or destruction. Presently, long-term (>50 years) coastal planning and decision-making has been done piecemeal, if at all, for the nation's shoreline. Consequently, facilities are being located and entire communities are being developed without adequate consideration of the potential costs of protecting or relocating them from sea-level rise-related erosion, flooding and storm damage.

   Research on major natural disasters and related technologies has become an important subject in geography and its application. The complexity analysis of the issue is possible in a system approach to theoretical and applied geography also in the integrity of physical and human geography.

Due to the Caspian Sea water-level fluctuation in coastal zone of Babolsar which happens very quickly in decade scale, the observance of safety element will be possible in light of the integrated coastal zone management with determine of sea frontage. In this context, geography and especially geomorphology is a main basic in this kind of coastal management.

   Detection of sea level fluctuations causing morphological changes in the earth surface and damage to facilities, clarifies the necessary of the present research to study the role of geomorphological indices in Babolsar coast zone constructions. The Coastal Vulnerability Index (CVI) is one of the most commonly used and simple methods to assess coastal vulnerability to sea level rise, in particular due to erosion and/or inundation. The CVI provides a simple numerical basis for ranking sections of coastline in terms of their potential for change that can be used by managers to identify regions where risks may be relatively high. The CVI results can be displayed on maps to highlight regions where the factors that contribute to shoreline changes may have the greatest potential to contribute to changes to shoreline retreat.

In this study, coastal vulnerability index (CVI) is used as effective geomorphic index on Babolsar coast zone constructions. In first, primary and secondary vertical frontages were detect using topographic data (digital elevation model with cell size 10-meter) and Caspian Sea water-level fluctuations.

   The primary vertical frontage includes areas which have the lower height of -24.7 meters and secondary vertical frontage consists of areas which are placed between -24.7 and -23.5 meters. Following this issue, within the primary and secondary vertical frontage, coastal vulnerability index was performed based on five parameters, elevation, slope, landform, land use and distance from main road. According to the coastal vulnerability based on natural (NCVI), human (HCVI) and total vulnerability index (TCVI), large parts of the Babolsar coastal zone (especially in Fereidoonkenar and Babolsar city areas) placed in classes of high and very high vulnerability.

   With respect to detection of the primary (level -24.7 m) and secondary (from level -24.7 to -23.5 m) frontages in Babolsar township area, 345 and 7177 hectares of the township lands are located in the primary and secondary vertical frontages, respectively. The most area of the township land uses in primary frontage belongs to natural structures that have 153 hectares of area. Survey of lands distribution in the height of -24.7 to -23.5 m (secondary vertical frontage) shows that agriculture land use has the most extent in this area; the area of this land use is 5293 hectares that equivalent to 74 percent of all lands which are located in the secondary frontage. Urban and industrial structures have 45 and 522 hectares of area in the primary and secondary frontages of Caspian Sea in Babolsar Township, respectively.


Bohloul Alijani,
Volume 2, Issue 3 (10-2015)
Abstract

Spatial analysis as the main approach of geography was reviewed and searched through its historical development. The results of this exploratory research showed that this approach was born after the Second World War due to the overall interest of geographers to develop universal theories and laws. The advocators of this field believed that the old regional geography was not able to develop a scientific and applied knowledge. The main motivation of the development of the spatial analysis was the quantitative revolution of the 1960’s which was triggered by the article published by Shaeffer in 1953. This was followed by some prominent geographers such as Bungeh, Ulman, Barry, Hagget, Chorley and others. Bungeh and Harvey strengthened the philosophical foundation of spatial analysis and others such as Hagget , Chorley and Hajestrand published important books in the field of quantitative geography. The main objective of spatial analysis is to analyze the distributions through the identification of their global and local structures and reasoning these structures by their spatial relationship with other distributions. In this regard it uses quantitative data and mathematical language to achieve the spatial theories and laws.

     The spatial analysis studies the spatial distributions and structures. These are the entities that are not subject to the human interpretation and thinking. This approach is true in the both physical and human geography. The knowledge it tries to achieve is the theories and laws about the spatial distributions. The methodology of spatial analysis is the quantitative methods such as experiment and survey. Thus in terms of ontology the entities of spatial analysis are independent of human mind and objective. The spatial characteristics of distributions are not constructed but discovered. The methodology used in spatial analysis is quantitative and objective including some methods such as experiment and survey. In 1980 and onward, human geography tried to move toward qualitative methods such hermeneutics but during 21st century all branches of geography are using quantitative methods more frequently than qualitative ones; but the use of the combined version of quantitative and qualitative methods is becoming more frequent day by day.

  The introduction of Geographic Information System as the operational environment for spatial analysis works the approach has become more widespread and dominant. Geographers are now able to analyze more spatial data and discover more spatial theories to solve the spatial problems. GIS is the main tool for spatial analysis and by introducing the science of geostatistics has improved the scientific and applied power of spatial analysis. The application of quantitative geography including geostatistics and GIS requires improved knowledge of mathematics, geometry and statistics; the main language of today geography. The spatial analysis covers the important topics of geography including spatial distributions, regions, spatial relations especially the relation between human and environment, spatial structures, spatial reasoning, interpolation, and the most important topic of spatial planning. The spatial analysis is the only scientific field to define and develop spatial planning. With correct and logic spatial planning there won’t be any environmental hazards. Because in any region all human settlements and activities are planned according the potentials of the region.


Professor Bohloul Alijani,
Volume 8, Issue 3 (12-2021)
Abstract

Geography and the Paradigm of Sustainable Development
 
Extended Abstract
Geography and sustainable development
The relation between society and environment has gone through different phases. During the years before the World War II, the environmental determinism controlled this relation. However, after the 1950’s the anthropocentrism replaced the environmental determinism and humans began to overuse the nature in such a way that nature lost its sustainability and many hazards and crises occurred. These destructions were so intense and widespread that some researchers compared with the episodes of geologic time and named the era beginning from 1970’s the Anthropocene epoch. During this period, the planetary boundaries were crossed in some areas such climate change, nitrogen cycle and biodiversity. Climate change has created most of other hazards.
To overcome these problems in 1978 the Brandtland report   announced the sustainable development as not to spend resources more than the nature’s production capacity and not to pollute the nature more than it can assimilate. In other words, the nature should remain in its sustainable state so that the future generations can live with no limitations. The principles of the sustainable development were defined in the earth summit of Rio in 1992 such as social equity, economic viability, and environmental sustainability. These principles were broken down in 17 goals. The Rio conference asked all countries to achieve the sustainable development goals by 2030. 
Methodologically the sustainable development requires integrated multidisciplinary approach to investigate the complex system of human- environment in different temporal and spatial scales to achieve the social equity, economic viability, and environmental sustainability. For this reason, many disciplines such as natural resources, environmental sciences, ecology and geography have contributed to the field. Different data from natural resources, human needs and drivers and environmental changes are required to process in very complicated models. In addition to different variables, the hazards are very important component of the sustainable development research, which also requires multi-aspect complicated approach and models. Spatial dependency is another aspect of sustainable development as it differs from place to place in many characteristics. In brief, from the spatial perspective the sustainable development is an integrated multi-approach research about the human-environment system to establish the sustainability on the earth. All of the related fields should study the sustainable development in collaboration with each other. However, the geography due to its long history of studying the relation between human and environment and its spatial dependency is the best single scientific field which can afford studying the sustainable development. Since the earliest times geography has developed quantitative methods, spatial techniques such as geostatistics, and environmental ethics to conserve the nature and human prosperity. The multi approach and systematic works are the main characteristics of Geography. On the other hand, Geography’s vision of defining the location for human’s activities while saving the nature’s sustainability covers the sustainable development completely. Therefore, geography is the overarching field for the sustainable development and it is the main intention of geographers to research and implement the sustainable development to reduce the environmental hazards and develop the sustainable environment for all the human beings at present and in the future. Geography studies the sustainable development through three steps including spatial analysis, spatial planning, and spatial management. In addition, geographers should learn different skills such remote sensing, multivariate statistics and above all develop a common language between different branches of geography.
 
Keywords: geography, sustainable development, environmental ethics, human nature relationship, Anthropocene, planetary boundaries, sustainability.
 
 
- Ahmad Hosseini, - Mostafa Khoshnevis, - Shamsollah Asgari,
Volume 8, Issue 4 (3-2022)
Abstract

.
 Introduction
Old trees are important and key elements of forest sites and are of great value in terms of forest management, reforestation, silviculture and ecology. Although old trees constitute a small percentage of forest trees, they account for a large share of forest carbon reserve and play a vital role in carbon storage. Understanding the how geographical and site distribution of these trees across the forest is essential to obtain information for forest restoration management. Therefore, this study was carried out to investigate the geographical and site characteristics of old trees of Wing nut, Ash, Hackberry, Sycamore, Elm, Olive, Cypress and Fig in Ilam province.
 
Materials and methods
After querying the villagers and local people and conducting numerous forest surveys, the old trees were identified and selected on the basis of the diameter of the breast. Then their geographical characteristics including city, district, village, geographical coordinates and site conditions including slope, aspect, altitude, soil depth, climate and proximity to water source were measured or recorded.

Results and discussion
The results showed that in terms of geographically distribution, the identified old trees have located in Ilam, Mehran, Malekshahi, Badreh and Dehloran cities. Topographically, the old trees of Wing nut, Elm, Ash and Fig were located in the 0-10% slope class, Hackberry and sycamore in the 0-10% and 10-30% slope classes, olive in the 10-30% slope class and Cypress in the 40-70% slope class. The old trees of Wing nut, elm, Ash and Hackberry were located in the north aspect, fig, sycamore and Cypress in the south aspect and olive in the west and south aspects. The old trees of Wing nut, elm, Ash, Hackberry, Sycamore and Cypress were dispersed at altitude class of 1100–1250 m and olive and fig old trees were at altitude class of 1250–1400 m above sea level. Climatically, the old trees of Wing nut, elm, Ash and Hackberry were located in the very cold Mediterranean climate, Cypress trees and some sycamore trees in the cold Mediterranean climate, and fig, olive and some plantain trees were in the semiarid cold climate. In terms of access to water resources, old trees of Wing nut, elm, Ash, Sycamore, Hackberry and Fig were located on the bed or margin of river, old Cypress trees had no access to water resources and some olive trees were close to water resources. In terms of soil subsidence, old trees of Wing nut, elm, Hackberry, olive, and fig were mostly in soils with medium depths. Old ash and sycamore trees were present in shallow to medium depths and old cypress trees were present in shallower soils. Although the identified old trees were present in limited sites, their long-term and sustained presence in these sites indicates that sites conditions are favorable for their survival.

Conclusion
Therefore, it can be concluded that the presence of low slopes, suitable soil bed and access to water resources were desirable characteristics for stability and survival of the studied old trees in these sites. Due to the above-mentioned characteristics, ecologically similar sites can be found in the forests of the province and can be restored by seed of old and resistant trees.
Keywords: Site, Topography, Climate, Geography, Old trees, Ilam

 
Prof Bohloul Alijani,
Volume 10, Issue 1 (5-2023)
Abstract

Abstract
During the recent decades the discipline of geography has lost its priority and position to some degree in Iran. Most of the graduates could not enter into the work in the universities and other organizations. The human-environment system, the main area of geographical specialty - has experienced many crises and hazards among which the global warming and climate change being the most destructive.  This means that the ongoing curriculum is not working well and needs to experience a fundamental change. To implement this operation some points should be cleared out: The hazardous condition of the world and especially Iran, the education history and state of geography in Iran, and the relation between geography and sustainable development of the world. The discipline of geography has changed its approach according to the circumstances of each period several times. For example, at the beginning of the twenty-century due to the dominance of the environmental determinism, the dominant approach of geography was the relation between man and environment. But since the 1970’s the earth has encountered with different hazards and crises to the extent that it is named as the period of Anthropocene. Accordingly, the dominant approach of geography during this Anthropocene era is to identify and solve the hazards and crises and lead the man- environment system towards the sustainability as once was requested by the secretary general of the United Nation.  In this regard the geography should adopt the sustainable development concepts and goals. For this reason, the geography of Iran should make a switch from its very specialized approach to a relatively wholistic view and pay more attention to the human- environment paradigm. To implement this order, the following assumptions should be considered.
  1. The applied objective of the discipline should be defined as “locating the suitable place for the living and activities of man without endangering the sustainability of the natural environment.  This objective is not clear at the present curriculum. Defining this objective will clearly show students what is their job after finishing the career.
  2. The main vision of geography education is the creation of the sustainable geographical space or environment.
  3. The research approach is problem solving. Because most of the laws and concepts are identified and defined. Due to the hazardous nature of the earth system geographers should identify the problems and research to solve them via geographical thought and knowledge.
  4. The terrestrial unit for working is region. This is very important concept in geography. We cannot prescribe one sustainability procedure for all of the world. But we do one for each region. When regions became sustainable, all the world will be sustained.
  5. In any region the hazards and crises will be identified and described through the spatial analysis methods and will be conducted towards sustainable human – environment system. This monitoring is composed of the stages of spatial analysis, spatial planning, and spatial managing.
  6. All of the geography subjects and materials are necessary for sustainable development goals. The only criteria will be added is the environmental ethics in all of the geography activities and applications.
  7. Instructors and students should be familiar with the techniques of integration and multi-dimension modelling.
  8. All geography graduates will respect the nature and its resources and should consider the environmental ethics during their academic career. They should be able to identify and solve the environmental problems through the geographical thinking. Geographical thinking means asking geographical question, gathering geographical data, processing the data with geographical (spatial) methods, and presenting the results in the geographical forms, i.e., maps. All the graduates should be creative and critical and should have the power of scientific challenging and discussions.
  9. Geography is one independent and overarching discipline and we will offer only one total geography in bachelor level. The master career can be specialized according to the applied objectives of the societies. The doctoral program is also one integrated discipline. The specialty of graduates will be defined according to their dissertation.
  10. The subjects include the fundamental courses such as physical geography and sustainable development, regional courses such as the human geography of Iran, technical courses such as remote sensing, GIS, and statistics, the applied courses such as evaluating the natural resources, and so for. The students with any high school background should pass all the courses with high quality so that after graduation they have the potential to analyze the human- environment problems and recommend the required solutions.

Key words: geography curriculum, sustainable development, geography of Iran, twenty first century, environmental ethics, geographical thinking, Geography and sustainable development.

 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb