Search published articles


Showing 4 results for Subsidence

Aydin Moradi, Somaye Emadodin, Saleh Arekhi, Khalil Rezaei,
Volume 7, Issue 1 (5-2020)
Abstract

 
 
Dr Amir Saffari, Dr Ali Ahmadabadi, Mr Amieali Abbaszadeh,
Volume 8, Issue 4 (1-2021)
Abstract

Subsidence is one of the most important natural hazards that has affected many plains of the country in recent years. Eyvanakey plain in Semnan province is among the plains that have faced this danger. Due to the importance of the subject, in this research, the evaluation of the subsidence risk and the estimation of the subsidence rate in this plain have been done. In this research, Sentinel 1 radar images, Landsat satellite images and SRTM 30 meters high digital layer are used as the most important research data. The most important research tools are GMT, ArcGIS and Super Decisions. Also, Fuzzy-ANP logic and SBAS time series models have been used in this research. This research has been done in two stages, in the first stage, the assessment of the subsidence risk and in the second stage, the estimation of the rate of subsidence in Eyvanakey Plain. Based on the results, 251 square kilometers of the study area (equivalent to 58.5% of the area) has a high and very high risk of subsidence, which mainly corresponds to the southern areas of the Eyvanakey Plain. Also, the results of the SBAS time series method have shown that the Eyvanakey plain has subsided between 28 and 533 mm during a period of 6 years. Considering that, the high risk class has the highest amount of subsidence in the study area, so it can be said that there is a strong relationship between the subsidence risk classes with radar images and the accuracy of the results of the subsidence risk classes is confirmed.
 
Fateme Emadoddin, Dr Ali Ahmadabadi, Seyed Morovat Eftekhari, Masumeh Asadi Gandomani,
Volume 10, Issue 3 (9-2023)
Abstract

Introduction: Land subsidence is one of the environmental hazards that threatens most countries today, including the majority of Iran's plains (Ranjabr and Jafari, 2010). Damages caused by subsidence can be direct or indirect. Infrastructural effects are direct and indirect effects of subsidence, but economic, social and environmental effects are indirect effects of subsidence (Bucx, et al., 2015). The environmental effects of subsidence are related to other effects of subsidence, including the infrastructural, economic and social effects of subsidence. The southwest plain of Tehran is considered one of the most important plains of Iran due to its large areas of residential, agricultural and industrial lands from various aspects, especially economic, political and social. The subsidence of the Tehran plain was first noticed by the measurements of the country's mapping organization in the 1370s. Since 2004, the responsibility of investigating this phenomenon in the plains of Tehran was entrusted to the Organization of Geology and Mineral Explorations of the country. Although several researches have been done in the field of subsidence factors, amount and zoning. In the field of estimation of subsidence and changes in water level, spatial correlation of subsidence with changes in water level and estimation of vulnerability due to subsidence according to the density of population, settlements and facilities in the southwestern plain of Tehran has not been done.
Methodology: In the current research, we will analyze and estimate the spatial regression of the subsidence phenomenon by InSAR technique with water level changes from 2005 to 2017, as well as the environmental effects of subsidence in the southwest plain of Tehran by using Quadratic analysis method (O’Sullivan and Unwin, 2010). The criteria map of the current research is overlapped using the ANP method (Ahmedabadi and Ghasemi, 2015) weighting and finally with the SAW method (Emaduddin et al., 2014) in the Arc GIS 10.8 software, and the vulnerability map due to land subsidence in the study area is prepared.
Results: The average subsidence in 12 years is about 9.9 cm per year. Average subsidence has occurred in four main zones. Maximum and minimum subsidence have been observed in B (near the Sabashahr) and D (in east of plain) zones respectively. The results of the interpolation of the depth of the underground water in the study area indicate that the general trend of increasing the depth from the south (10 meter) to the north (more than 90 meter) of the plain. The results of spatial correlation showed that there is a significant direct relationship between the spatial layer of the average subsidence rate of Tehran Plain and the spatial data of the underground water level, and the R value is equal to 0.61. The distribution map of the underground water depth of the study area in the form of Quadrat analysis shows that in the main part of the plain, the depth of underground water is at an average level. The general trend of changes in the level of underground water is decreasing from northwest to southeast and is in 5 levels. The distribution of the networks shows that the rivers have three linear trends from north and northwest to south; their dispersion is mostly in the center of the study area. The flood rate is higher in the central plain networks. In study area, there are important arterial roads such as Tehran-Qom highway, Tehran-Saveh highway and Tehran Azadegan highway. The southern and northeastern areas of the study area are urban settlements such as Islamshahr, the 18th and 19th districts of Tehran Municipality and other residential areas such as Sabashahr. The major part of the region has fertile soil and the occurrence of subsidence can have negative effects on the fertility and texture of the soil in the study area. The results of vulnerability analysis due to subsidence show that there are 5 vulnerability classes in the study area including very low, low, medium, high and very high.
Conclusions: All in all most of the study areas (central, northern and western networks) are in medium, high and very high vulnerability. About 14,600 hectares of the study area are in medium vulnerability. Which is continuous from the west to the east of the study area. Most of the urban infrastructures are moderately vulnerable to subsidence. About 17,000 hectares of the southwestern plain of Tehran are very vulnerable. That more than half of the area of ​​this area is covered by settlements and urban infrastructures. Therefore, the phenomenon of subsidence causes irreparable damage to the settlements and infrastructures in the southwest plain.

 

Dr Manijeh Ghahroudi Tali, Sir Farhad Khodamoradi, Dr Khadijeh Alinoori,
Volume 11, Issue 4 (2-2025)
Abstract

Subsidence as an environmental hazard is caused by various natural and human factors. The drastic changes in land use, the increase in the number of deep wells, and the effects of the subsidence phenomenon in Dehgolan plain show the need to investigate these influencing factors. In such a situation, adequate understanding of the degree of vulnerability and investigation of the influencing factors in that process provides the opportunity for planning and environmental preparation of the space in order to reduce vulnerability. In this research, first, the NDVI index of the plain was investigated with the help of 15 Sentinel-2 and Landsat 8 satellite images, and the best date was selected for the Sentinel-1 images. In this way, 8 Sentinel-1 satellite images were analyzed over a period of 8 years (2014-2021) and all the images were analyzed and processed in eight stages with the help of SNAP software. 3 Landsat 7 and 8 satellite images were used to investigate land use changes (2000-2021).By applying atmospheric and radiometric corrections and finally performing the supervised classification method using Arc GIS software, land use was extracted and its changes were checked. The interferometric results showed that the Dehgolan plain suffered a total of 480 mm of subsidence. So that 60 mm of subsidence has occurred in this plain every year. In the end, with the preparation of the map of land use changes, the classes of irrigated agricultural and residential lands increased by 6.98, 1.47 percent, and the uses of pasture, forest and rainfed lands were faced with a sharp decrease, so that irrigated lands increased by 8477 and residential by 672 hectares. Is. The results obtained from the analysis of the relationship between water use and subsidence showed that rapid subsidence occurs mainly in water and urban land use classes. This is a consequence of increasing water extraction for agriculture and drinking. Usually, the pattern of land use conversion with more human influences has increased the rate of subsidence.
 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb