جستجو در مقالات منتشر شده


1 نتیجه برای آشکارسازی پهنه سیلاب

امید اشک ریز، فاطمه فلاحتی، امیر حسین گرکانی،
دوره 8، شماره 4 - ( 11-1399 )
چکیده

رشد سکونتگاه­ ها و افزایش فعالیت­های انسانی در دشت­ های سیلابی به ویژه حاشیه رودخانه ­ها و مکان­های مستعد سیل، میزان خسارت ناشی از این مخاطره را افزایش داده است. از این رو تعیین گستره سیلاب در راستای برنامه­ ریزی­ های کاهش خطر، آمادگی و پاسخ و بازیابی و بازتوانی پس از این مخاطره از اهمیت بسزایی برخوردار است. در مطالعه حاضر از الگوریتم­ های متداول یادگیری ماشین و طبقه­ بندی تصاویر سنتینل2 جهت تولید نقشه ­های پوشش اراضی، آشکارسازی پهنه­ های سیلابی و تعیین مساحت اراضی تحت خسارت سیلاب فرودین1398 شهرستان آق­ قلا استفاده شد. همچنین به منظور بررسی و افزایش دقت الگوریتم­ ها، سه شاخص طیفی نرمال شده پوشش گیاهی(NDVI)، پهنه ­های آبی(MNDWI) و اراضی ساخته شده (NDBI) با تصاویر مورد استفاده ترکیب شدند. پارامترهای مختلف تنظیم هر یک از الگوریتم­ ها به منظور تعیین تأثیر آن­ها بر دقت طبقه­ بندی و جلوگیری از کسب نتایج خوشبینانه ناشی از همبستگی مکانی میان نمونه­ های آموزشی و آزمایشی، با روش اعتبارسنجی متقابل مکانی ارزیابی شدند. نتایج نشان داد که ترکیب شاخص­ های طیفی منجر به افزایش دقت کلی الگوریتم­ ها شده و به منظور تولید نقشه­ های پوشش اراضی، الگوریتم جنگل تصادفی با دقت 83.08 درصد بدلیل استفاده از روش یادگیری جمعی از دقت و تعمیم­ پذیری بالاتری نسبت به سایر الگوریتم­ های ماشین بردار پشتیبان و شبکه عصبی با دقت به ترتیب 79.11 و75.44 درصد برخوردار است. پس از مشخص شدن دقیق­ ترین الگوریتم، نقشه پهنه­ های سیلابی با استفاده از الگوریتم جنگل تصادفی در دو کلاس اراضی آبی و غیر آبی تولید گردید و دقت کلی الگوریتم در بهینه ­ترین پارامترها و با ترکیب شاخص طیفی(MNDWI) 93.40 درصد بدست آمد. سپس با همپوشانی نقشه ­های پوشش اراضی و پهنه­ های سیلابی، سطح اراضی ساخته شده و اراضی زراعی و فضاهای سبز تحت خسارت سیلاب به ترتیب 4.2008 و 41.0772 کیلومتر مربع برآورد گردید.
 

صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به سامانه نشریات علمی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb