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Abstract

Recent papers, [11[2] & [3], describe some algorithms for linear first kind integral equa-

These algorithms are based on angmented Galerkin method and Cross-validation

tions.
scheme

In this paper we apply algorithms of {1] & [2] on non-
ion. In order to obtain a posteriori error estimate,

[5]. The results show that, these algorithms work well for linear equations.
linear first kind integral equations

of Hammerstein type with bounded solut

point Gauss-Kronrod quadrature rule [4]. Finally, we give a number of

we apply fifteen-

numerical examples showing that the algarithms work well in practice.
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1. Introduction

We consider numerical solution of non-

linear first kind integral equation of Ham.

merstein type

1
f klz.y) Fy)dy = g(z), -1<e<1,

(1)

where
Fly) = ol fly)), (2)

and k, ¢ and ¢ are known functions and F

ig the unknown function which is assumed
Lo be bounded, i.e.,

fr.l’ {_: f[:x:l E ..llru- _IEIEI

We can approximate I by

N

Fx(z) =) a;Ti(x), (3)

=0
where Ti(x) is the Chebyshev polynomial
of the first kind of degree i. We obtain

Boians axn by one of the algorithms in [1]

*"]“r":”%"”i;t |Ba — g]|
gt la;| < & = (.";55 7l
.|’. = [-]1],....'.'“{,
I = thax(l, 1),
where the elements of the coelficient ma-

trix B are given by

J'L{r g.r ffr]z’ W)
/ ] iz e dyy,

,0=01,... N

and the elements of the vector g are

0. = | gt/ -2 i,

—1

?;Zﬂ,l._....,Jﬁ'r",
1
a = (ag,ay,... ay),

and Cy and r are regualrization param-
eters. Here we impose r > 0.5 and set

heuristically, and for ¢ i

= Allgllee/[B]|-0.

where A must be sel heuristically. There
are some strategies in [1] for choosing r
and A.

Suppose P is a partition of [—1, 1],
_‘I::I:D Tl - G I o dn—1 = In:l7

wherez; = —1+4i/50forie | = (01505, 100
and n = 100.

Let @ be the partition of [—1, 1] corre-
sponding to fifteen points of Gauss-Kronrod
nodes [4], we denoted @ by

2. The basic method

This method is pointwise. let T be an
arbitrary point in [~1, 1], we approximate
J{z). Obviously, if we approximate I at
Ganss-Chebyshev points, we would be able
Lo approximate f by expansion method [1]
& [2]. Here, we approximate fon@ ie,

we evaluate approximate values of T =
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flg;) for 3 € J. Sometimes, to obtain
m.ore accuracy, we must approximate [ on
more points, see example 4.

From (2) and (3)

wlas, i) — Fulg;) = 0, jelk

If p(z, ) has inverse with respect to y, we

can compute f,; by

L = [P_iquTEV[qJJ}? JEJ

otherwise by knowing lower and upper bounds
of [ we continue as follows. For comput-
ing f;. we may solve the following opti-

mization problem

Minimize @;(x), (4)
fn! i: xr < fu

where

¢;(x) = (wlgx) — Fnla,))’s 7€ 4

Ta solve (4), we apply Brent method which
uses a combination of the golden section
search and successive parabolic interpola-

tion [4].

4. A posteriori error
By approximating [ on (J, we can com-

pute

f klenu) ely, fly))dy, vel,

by Gauss- Kronrod quadrature rule, u;. which

lias a posteriori errar estimate, v, [4].

Let

i

2

¢ = Z{Hi—.?{m}}}:flm] )

100 3
e = lz v}/ 101} .
1=0
Usually, it is expected that e; < ey
Let z; be the optimum value of (4), j €
J. I (1) has any solution, it is expected

to have z; = 0. Let

14 ¥
e = |2 7t/ 15] :
7

It is expected that il e; £ e, for almost
all N, and if es is not negligible, (1} has no
solutions, Obviously, if we use composite
Gauss-Kronrod quadrature rule, the def-
inition of €, ez and ey will change and

their values become smaller.

4. Numerical examples and results.

We consider a set of six examples. All
computalions were carried out on an IBM-
PC using C language and long double pre-
cision.

4.1. Examples

1)

/_“_f“'“f-ﬂ +cos(y))(1 + f(y))* dy

= drsin(z);, —T<r=m,

with solution f(x) = sinjx).
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2) 6)
/Ik(m ) (y)d B 0<z<1 fner"’\.r”f(}d e =]
. ' U Yay = 12 = b Ly 3 ¥)ay = o 1
where - -1 <<
yz—-1), y <z, with no solutions.
kleoy) = :
{y—1), =<y, Results for the above examples are pre-
] ) sented in tables 1-6, respectively,
with solutions f(r) = +z.
Table 1 (Example 1)
3) r=54=14
/” i 5 J : N £1 g £3
o ostE =y J(y)) dy = sin(z), 2 34E-12 3.3E8 1.1E-23
0<z<2, 3 34E-12 33E8 1.1E-23
s ; 4 1.OE-9 33E-8 5.7E-21
'1th L = l.
Wi solukon Fis) 5 34F-12 3.3E8 1.1E-93
§ 6 34E-12 33E-8 1.1E-23
) 7 34E-12 3.3E-8 1.1E-23
f In(z—y) f*(y) dy = g(z), —1 <z <1, 8 34E-12 33E-8 1.1E-23
=3 9 34E-12 3.3E-§ 1.1E-23
where 10 3.4E-12 3.3E-8 1.1E-23
14 2%
g(z) = In(l + z) r— Table 2 (Example 2)
r=8A=4
1122 4+ 622 - 32 + 2 '
18 ety N Ej EQ ﬂS
with solutions f(r) = £z, 2 1.1E-10 4.0E-10 7.1E-21
= 3 1.1E-10 4.0E-10 7.1E-21
& 5) 4 LIE-10 4.0E-10 7.1E-21
S 5 L1E10 4.0E-10 T7.1E-21
< ] — 2 et et T
S [ eV fly)dy = — — — 4+ &5 —, 6 1,IE-10 4.0E-10 7.1E-21
= 5 : 78 23 | gt =
g 7 L1E-10 4.0E-10 7.1E-21
3 0=esl, & LIE10 4.0E10 7T.1E-91
-g with no solutions. 9 1.1E-10 4.0E-10 7T.1E-21
5 10 1.1E-10 4.0E-10 7.1E-21
3
g
k=t
3
2
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Table 3 (Example 3)

r=4,A=4

Table 5 (Example 5)

r=2f}1=5

=1

€2

£x

€1

€2

€3

Wome =1 o oo e W b3 |

=+
=

1.0E-3
L.1E-6
1.2E-8
1.6E-11
9.1E-12
9.1E-12
9.1E-12
Q1k-12
9. 1E-12

2.5E-4
1.3E-T
5.9E-9
5.9E-9
5.9E-9
5.9E-9
2.9E-9
5.9E-9
3.8E-9

1.9E-T
3.3E-10
1.8E-16
2.6E-20
LAE-22
1.4E-22
1.4E-22
1.4E-22
1.4E-22

Table 4 (Example 4)
r=4A4=4

1.028
1.028
1.028
1.028
1.028
1.028
L.028
1.030
1.030

Woon =1 S Gh = LD k| 2R

fuud
=

1.5E-14
1.2E-6
4.5E-14
4.5E-14
4.5E-14
1.9E-4
4.5E-14
3.0E-3
3.0E-3

4.4E-1
14E-1
44E-1
4.4E-1
4.4E-1
4.4F-1
4.4k-1
4.5E-1
4.5E-1

Table 6 (Example 6)

r=2\A=5

£y

52

€3

o LIRS -

e 00 =l

L0

2.4E-2
1.2E-2
2.0E-4
2.0E-4
2.0E-4
2.0k-4
2.0E-4
2.0E-4
2.0E-4

4.5E-2
4.91-2
4.TE-2
4.TE-2
4.7E-2
4.7E-2
4.TE-2
4.7E-2
4.7E-2

3.4E-21
9.0E-5
3.2E-21
3.2E-21
3.2E-21
3.2E-21
3.2E-21
3.2E-21
3.2E-21

€1

C3

L=k

1.470
1.470
1.470
1.470
1.470
1.470
1.470
9 1.470
10 1.470

09 =1 S WL e RO D

4.5E-14
4.5E-14
4.5E-14
4.5E-14
4.5E-14
4.5E-14
4.5E-14
4.5E-14
4.5E-14

5.2E-1
5.2E-1
5281
5.21-1
5.2E-1
5.2F-1
5.2E-1
5.2E-1
5.2E-1
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4.2. Comments

In all examples, it is assumed fa=-=1

Ju = 1.

thal, approximate solutions are very ac-

1

The results in tables 1.4 show

curate, values of ey are very small and
€1 = eg for almost all N, but tables 5 and
6 show that, these examples have no solu-
tions.

Example 4 is a Volterra singular inte-
gral equation and to obtain accurate re-
sult, we used a composite Gauss-Kronrad
quadrature rule with 5 panels for each in-
terval.

4.3. Conclusion

From the results, we conclude that au-

tomatic augmented Galerkin method work
well for linear and Hammerstein first kind
integral equations. The cost of operations
is not high. We can also compute a pogte.
riori error estimate and use it as an indica-
tion of accuracy of approximate solution.
Also with knowing the inverse of 2, We can
apply this method without knowing lower
and upper bounds of f.
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