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Abstract

We investigate the problem of estimating the ratio of subjects that share a particular
characteristic in a population, but some degree of misclassification is possible. The
misclassification probabilities are considered as the random variables, and we study a
Bayesian approach to this problem. We propose a method to calculate the exact posterior
density of the ratio, based on some prior distributions. We, then, study a method to
determine the sample size, using average coverage criterion. We also investigate the effect

of different prior distributions on the sample size.

1. Introduction and Preliminaries

Suppose we investigate the existence of a particular characteristic in a population to
estimate the ratio of subjects that share it. If the distinguishing method is error free, then
the well-known sample size formula, based on the normal approximation to the
binomial distribution, can be used. This gives

n= E@ g 9(1 - 9)
0w 0O

where w is the confidence interval width.

Now, suppose that for classifying the subjects, we have some misclassification
errors. We may distinguish a subject having the characteristic as a subject that dosen’t
have that characteristic and vice versa. This problem is common in some researches, for

example in the estimate of the prevalence of a disease based on some medical tests.
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It should be mentioned that, in each method of classification, two principal criteria,
sensitivity and specificity, are important. Sensitivity is the probability of distinguishing
a subject as a positive subject truly. Specificity is the probability of distinguishing a
subject as a negative subject truly.

Let 8 be the actual ratio of the positive subjects and p be the ratio of the positive

subjects distinguished by the method. If sensitivity and specificity are respectively

shown as s and ¢, we have
p=0 s+(1—9) (l—c). (1)
Supposing s and ¢ as fixed constants, Rahme and Joseph [5] conveyed the
following formula for the adjusted sample size

27

Mgy = )ép(l -p), )

(S +c—1
where p is calculated in equation (1) based on a value of 6. In practice, of course, 8 is
unknown and therefore the researcher must estimate the value of p based on a primary
sampling or some other information, and then calculate the necessary sample size.
Equation (2) also demonstrates that both of the sensitivity and specificity have a very
large influence on sample size. As expected, when s =c =1, the method is error free,
p =6 and equation (2) reduces to the standard binomial sample size formula.

The above problem is specially challenging when the degree to which misclassifi-
cation occurs is not exactly known. So, the problem of determining the sample size for
estimating the ratio has also been considered from the Bayesian point of view. This
approach, first, has been studied without considering misclassification in a series of
researches such as those of Adcock [1,2] and Gould [3]; and has recently been studied
by Rahme et al. [6] subject to misclassification.

In Bayesian approach, the posterior density of 6 and then the sample

size are calculated based on some prior distributions of 6,s, and c.In this respect,

Joseph et al. [4] used the Gibbs sampling to estimate the posterior density of
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6. Recently, Rahme et al. [6] used the Monte Carlo approximation to obtain the

posterior density of 6.

In this paper, we use the Bayesian approach to determine the sample size for
estimating the ratio, subject to misclassification when the sensitivity and specificity are
unknown. In this respect, following the investigation of Rahme et al. [6], we calculate
the exact posterior density of 8 in the second section of this paper. We also show that,
using the Beta densities as the priors, the posterior density of 6 will be a convex linear
combination of Beta probability density functions.

In Section 3 of this paper, using average coverage criterion and symmetric intervals
around the posterior mean, we will propose a formula for determining the sample size,
based on the given posterior density in Section 2. Then we will compare the results with

those of Rahme et al.’s work [6].

In Section 4, the influence of the different prior distributions on the sample size will

be examined, numerically.

2. Bayes Estimator for Ratio when Sensitivity and
Specificity are Unknown

In this section, we apply a Bayesian approach to estimate ratio, 8, when sensitivity
and specificity are unknown. Considering the prior information about sensitivity,
specificity, and 6, we first calculate the posterior density of 6 and then we obtain a
Bayes estimator of 8 under squared error loss function.

Let f (x,G) be the joint density of X and 6, and g(x) be the marginal probability
density function of X, where X is the number of subjects have been diagnosed as virus

defected in a sample of size n of a population. Then the posterior function of 8 will be

rlo)r)= L4-0) 3)
g(x)
where f(x,9)=I;Ioll(x|9,s,c)f(@,s,c)dsdc,
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¢(e)=[ . (-.0) a6

and f (9, c, s) is the joint prior density function of s, ¢, and 6. In addition, the likelihood

function / (x , ) is as follows

)=F o5+ -6)i-c}-9)+-0) 4

Suppose that 6,s, and care independent Beta random variables (Remarks 1 and 2

below) with parameters as (a,,8,).(a,. B, )and (a, ., B.). respectively. Then

f(x,9)= AJ’ OIJ' OI{QS + (l - 9)(1 - c}“{@(] - S).,. (1 _ G)C}n—x

CACRE (R:) CRPLIRY () bl (R cpre ®

il

B(a,.B,)8(,.B,)8(@..B.)

where

A=

Rahme et al. [6] has estimated the expression (4) using the Monte Carlo approxima-
tion, whereas we propose an exact rule for the posterior density using binomial

expansion.

Theorem 1. Considering the above assumptions, the posterior density of 0 is

x n-x @%ﬂ %1B2609+[+k 1 |- e)ﬁem—l k-1
—o -o
Z Z @:%’ %313233

Bl=B(a, +k,B, +1),
B2=Bpn-x-1+a,,x-k+p.), (6)
B3=Bla, +1+k,B, +n—1-k).

)

where

Proof. Using binomial expansion of {6 s+(1-0)1- c}x and {8(1-s5)+(1-6)4", in
(4), the following formula is induced

102


https://ndea10.khu.ac.ir/jsci/article-1-1152-en.html

[ Downloaded from ndeal0.khu.ac.ir on 2025-11-15]

Sample Size Determination for Estimating Ratio... A. Zeinal, S.M. Taheri

1:0)= 407 (1-0)*"

II ;@%&; (1-0)1- c))“‘

5 -y -0y P

= 40" (1-9)

JvO‘Jool i’ig%ﬂ %Hk(l )" s a+k1( )ﬁ+11 p——— 1( )x k+B, lgsdc

—_ Aeag ﬁ6+” 1

|:|x n—x -X . |:|
g 2 @%’ *“1-0)""Bla, +k,B, +1)B(n-x-1+a,,x-k+p.)0
= = / &
— = n_xZ gle+k-1 (] — g )PornIh 7
;} Zo x,n,k,l ( ) ( )

@% %Eﬁa +k,B, +1)Bn-x-1+a,,x—k+p,)

xnkd ~ ae,ﬁ )B(GA,B )B(CY(,B )

where

Z

Therefore the marginal probability function of g(x) is resulted as follows

X n—x

ZZZMM o TI+k,By+n—1~- k) (8)

By substituting the expressions (7) and (8) in formula (3), we will gain (5).

Remark 1. In this work, as other similar works, prior information in the form of a Beta
density will be assumed. This family of distributions was selected since its region of
positive density from 0 to 1, matches the range of all parameters of interest, and because
it is a flexible family, in that a wide variety of density shapes can be derived by
selecting different choices of a and 3. It also has the advantage of being the conjugate
prior distribution for the binomial likelihood, a property that simplifies the

derivation of the posterior distributions.
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The particular Beta prior density for each test parameter could be selected by

matching the center of the range with the mean of the Beta distribution, given by

a /(a + B); and matching the standard deviation of the Beta distribution, given by

ap :
,/W with one-quarter of the total range [4].

Remark 2. It will often be reasonable that 8,s, and ¢ are a priori independent, given
that the test methodology (e.g. the cut-off values for continuous tests) remains fixed.
This is because the performance of the test within positive and negative subgroups of
patients may not be affected by the prevalence of the disease in the population, and prior
knowledge about the sensitivity and specificity given any fixed cut-off usually is gained

by independently applying the test to known positive and negative subjects (see also[6]).

Proposition 1. Regarding the assumptions in Theorem 1, f (9|x), the posterior density

function of @, is a convex linear combination of Beta probability density functions.

Proof. Let
X n—x —x
; z @%ﬁ %13233
R — =0 =0 fyy=i l
X,01,0 Y nex —x )
Z Z @%’ l %513233
=0 [=0
eaeﬂ'—l (1 _ 9)/39+n—i—1
70)= _
@) Bla,+i, B, +n—i)
Then

76x)=S r.,.76)

=

that is the posterior density function of 6 is a convex linear combination of Beta

probability density functions.

Proposition 2. The Bayes estimator of 6 under squared error loss function is
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ii@%’;x 1B2B4
A =0 =0

Q(x,n) = )

%z@%‘ ;x%mzm

where BA=Bla, +1+k+1,B,+n—1-k). (10)

Proof. It is known that, Bayes estimator under squared error loss function is equal to
E (9|x), i.e., the expectation of the posterior density. So, the relation (9) is calculated
easily.

Note. Considering a,, B, as positive integers, the posterior density function of 0 is a

polynomial of a, + 3, + n—2 order.

Examplel. According to some available information about 6 :“the prevalence of a

particular virus in a population”, the prior distribution of B(1,3) has been considered for
6. Based on the previous experiences on accuracy and inaccuracy of the test results, for
a virus diagnostic test, the prior distributions of B(60,0. 1) and B(30,0.1) have,
respectively, been considered for sand c¢. Suppose that, in a random sample with the
size of n=6 of the above population, two subjects have been diagnosed as virus
defected. In this case, using the expressions (6) and (10), we have

B1=B(60+k,0.1+1)

B2=B(34-12.1-k)

B3=B(+1+k9-1-k)

BA=BQ+I+k9-1-k).

Therefore, the posterior probability density function of @ is calculated as follows
/(6]x)=0.00001(1-6)6° +0.00091(1 —8) 6° +0.04161(1 - 8)'6*
+1.58637(1-6) 6° +245.50751(1-6)°0* +1.44239(1-6)' 6 +0.02264(1-6)
=242.540° —1455.360" +3637.340° — 4845.240°
+3625.820% —1442.446° +236.046 +1.260 +0.23
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Furthermore, on the basis of (9), the Bayes estimator of 6 under squared error loss

6 = %%%ﬁ%%wzm
5 S it

3. Sample Size Determination

function becomes

=0.29782.

Suppose that in a sample of size n of a population, the number of sample subjects

distinguished as positive subjects is x. Then

@(x,n)-g,é(x,n)gg

is a confidence interval with the width of w for 6. The coverage probability of this

interval depends on x and n. This gives

6

(o) a6,
)=5

coverage (x, ) = I

é(x,n
Although x is unknown, its probability function, i.e., g(x) is available. Therefore, the
expectation of confidence interval (in other words, average coverage) is initially known

and calculated as follows

coverage (x,n) g(x).
ZO ge(x,n) g(x)

Thus, to have a confidence interval with the minimum average coverage of 1 —a, the

sample size n must be chosen in such a way that

S ?(X’”)+§f(x,e) d8>1-a. (11)
6(xn) - =
x=0 ’ 2

The substitution of expression (7) in (11), results in the determination of the smallest

value of n so that
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6(xn)

n x n-x +% ag+l+k-1 _ Bo+n—I—k-1 _
xZo Zo Zo Z*’”’k’lIé(X,n) . %9 1 (1-6) d8=>1-aqa.

Example 2. Rahme et al. [6] have considered the following parameters for the prior

distributions of 0, s, and ¢ in a numerical example
(ae ) ,39) = (6,14)

(@.,B.)=(44.1,0.1)
(@..B,)=(130.1,6.1).

Using Monte Carlo approximation, they obtained 348 for the minimum value of #, so

that the average coverage confidence interval of width w = 0.1 is at least 0.95.
But, using the above prior densities, we have calculated 0.95072, 0.95046, 0.95020,
0.94994 respectively for 348, 347, 346, and 345 as values of n. As a result, the

minimum value of n to get the minimum average coverage of 0.95 is equal to 346.

4. The Influence of Priors on the Sample Size

For studying the influence of prior distributions on the sample size, we considered
different Beta distributions as priors for 8,s,c and determined the related sample size
when w=0.1.

As a result, we obtained the following tables which indicate when the prior
distributions of 0, s, and ¢ change, the sample size essentially changes.

Note that, in terms of sensitivity and specificity, the cases 1, 2, and 4 are similar, but
n,< n,<n,. This is not surprising, because V,(8)<V,(0)<V,(0). In other words, in
case 2 we have a more precise prior than in case 4, and so in this case we need fewer
samples than in case 4. The same argument is valid in comparing case 4 with case 1.

On the other hand, case 2 and case 3 have the same prior distribution of 8, but n, <
ny. Since in case 2 we face with a more exact test (in terms of sensitivity and
specificity) than in case 3. Note that E,(s)>E,(s), E,(c)>E,(c), and V,(s)<V,(s),
V,(6)< V3(0).
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Table 1(a)
Comparison between sample sizes, based on some different priors
case S c n
1 B(130.1,6.1) B(44.1,0.1) B(6 14) 346
2 B(130.1,6.1) B(44.1,0.1)  B(,19) 71
3 B(65.1,6.1)  B(22.1,0.1)  B(1,19) 101
4 B(130.1,6.1) B(44.1,0.1)  B(.9) 160
Table 1(b)
Comparison between sample sizes, in terms of means and variances of priors
case E(s) V(s) E(c) V(c) v(0)

1 09552 3.1 %10 0.9977 4.99x10~  0.01

209552 3.1 %107 0.9977 4.99%107° 2.26x107°
309143 1.1 X107 0.9950 1.93x10~* 2.26x107°
4 09552 3.1 %107 0.9977 4.99%107 8.18x107°
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