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Abstract 

A numerical method for solving variational problems is presented in this paper. The 

method is based upon hybrid of Hartley functions approximations. The properties of hybrid 

functions which are the combinations of  block-pulse functions and Hartley functions are 

first presented. The operational matrix of integration is then utilized to reduce the 

variational problems to the solution of algebraic equations. Illustrative examples are 

included to demonstrate the validity and applicability of the technique. 

 

1. Introduction 

Orthogonal functions and polynomial series have received considerable attention in   

dealing with various problems of dynamical systems. Typical examples are the Walsh 

functions [1], block-pulse functions [2], Laguerre polynomials [3], Legendre 

polynomials [4], Chebyshev series [5] and Fourier series [6]. The main characteristic of 

this technique is that it reduces these problems to those of solving a system of algebraic 

equations thus greatly simplifying the problem. The approach is based on converting the 

underlying differential equations  into integral equations through  integration ,  

approximating  various involved  in the equation by  truncated  orthogonal  series and 

using the operational matrix of integration P , to eliminate the integral operations. 

  

Keywords: Hybrid; Hartley functions; Operational matrix; Variational problems; Direct methods; 

Orthogonal functions. 
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The element )t,n,m(h  for, r,...,,,...,r,rn,N,...,,m 101   21 +−−==  are the basis 

functions. Orthogonal on certain interval  [0,1], and the matrix P can be uniquely 

determined on the particular orthogonal functions. The direct method of Ritz and 

Galerkin in solving variational problems has been of considerable concern and is well 

covered in many textbooks [7],[8]. Chen and Hsiao [1] introduced the Walsh series 

method to solve variational problems. Due to the nature of the Walsh functions, the 

solutions obtained were piecewise constant. 

Refs.[6,9] applied Fourier series and Taylor series to obtain a solution to the second 

example in [1] which is an application to the heat conduction problem. It is shown that 

to obtain the Taylor series coefficient, a matrix commonly known as Hilbert matrix is 

used. Hilbert matrices are ill conditioned and hence the Taylor series is not suitable for 

the solution of the second example in [1]. 

In the present paper, we introduce a new direct computational method for solving 

variational problems. This method consists of reducing the variational problems to a set 

of algebraic equations by first expanding the candidate function as a hybrid functions 

[10] with unknown coefficients. These hybrid functions, which consists of block-pulse 

functions plus Hartley functions [11] are given. The operational matrix of integration is 

then utilized to evaluate the hybrid function coefficients. The variational problems are 

first transferred into a system of algebraic equalities. Here we will demonstrate the 

results by considering the illustrative examples discussed in [3] and the second example 

in [1]. 

2. Properties of Hybrid Functions 

2.1. Hybrid Functions 

Hybrid of Hartley functions r,...,,,,...,r,rn,N,...,,m),t,n,m(h     1  0  1    1  21 −+−−==  

defined on [0,1], have three arguments, n and m are the order for Hartley functions and 

block-pulse functions respectively and t is the normalized time and is defined as 
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Here, )()( ntcastn =φ are the well-known Hartley functions of order n which are 

orthogonal in the interval [0,1] and satisfy the following formula [11]: 

).tn(Sin)tn(Cos)nt(cas ππ 22 +=  (2) 

Since )t,n,m(h  is the combination of Hartley functions and block-pulse functions, 

which are both complete, thus the set of hybrid functions, form a complete set. 

2.2. Function Approximation 

 A function )t(f defined over [0,1) may be expanded as 

 (3) 
where mnc  are given by 

,
)t,n,m(h

))t,n,m(h),t(f(cmn 2= 
(4) 

and (.,.)  denotes the inner product. If the infinite series in Eq. (3) is truncated, then Eq. 

(3) can be written as 

 (5) 

where C  and )t(H  are 112 ×+ N)r(  matrices given by  

,c,...,c|...|c,...,c|...|c,...,c|c,...,cC T
r,Nr,,N,r,Nr,r,Nr, ][ 10011111 +−+−−−=  (6) 

and 

|)t,r,N(h),...,t,r,(h|)t,r,N(h),...,t,r,(h)t(H 1111[ +−+−−−=  

.)t,r,N(h),...,t,r,(h|...|)t,,N(h),...,t,,(h|... T]1001  
(7) 

Also, the integration of the cross product of two hybrid vector is 

,)()(
1 

0 ∫ = DdttHtH T (8) 

where D  is given by 

),I,...,I,I.(diag
N

D 1
=  

and, I  is an NN ×  identity matrix. 
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2.3. Operational Matrix of Integration 

The integration of the vector )t(H defined in Eq.(7 )is given by  

 (9) 

where P is the )r(N)r(N 1212 +×+  operational matrix for integration and is given by 

 

(10) 

In Eq.(10) I  is an NN ×  identity matrix and 

 

(11) 

 

3. Hybrid Functions Direct Method 

Consider the problem of finding the extremum of the functional 

 (12) 

The necessary condition for )t(x  to extremize )x(J  is that it should satisfy the 

Lagrange-Euler equation 

  

with appropriate boundary conditions. However, the above differential equation can be 

integrated easily only for simple cases. Thus numerical and direct method such as well- 
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known Ritz and Galerkin methods have been developed to solve variational problems. 

Here we consider a Ritz direct method for solving Eq.(12) using hybrid functions. 

Suppose, the rate variable )t(x can be expressed approximately as 

. (13) 

Using Eq.(9), )t(x can be represented as 

 
(14) 

where 
.,...,|...|,...,|)(x),...,(x|...|,...,|,...,X T]0000000000[0 =  

We can also express t in terms of )t(H  as 

 

(15) 

Substituting Eqs.(13)-(15) in Eq.(12) the functional )x(J  becomes a function of 

.r,...,,,,...,r,rn,N,...,,m,cmn 101121 −+−−== Hence, to find the extremum of )x(J we 

find 

 
(16) 

The above procedure is now used to solve the following variational problems. 

 

4. Illustrative Examples 

4.1 Example 1 

Consider the problem of finding the minimum of the functional[12] 

 (17) 
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 (18) 

Using Eqs.(13)-(15) in Eq.(17), we get 

 

Using Eq.(8), we obtain 

.CPDPCDdCDCC)x(J TTTT ++=  (19) 

Also, using Eq.(14) and the boundary conditions in Eq.(18), we obtain 

  

Let 

 

Hence we have 

 (20) 

We now minimize Eq.(19) subject to Eq.(20), using the Lagrange multiplier technique. 

Suppose 

where λ  is the Lagrange multiplier. Using Eq.(16), we get 

 

or  

 (21) 

By choosing ,r,N Eq.(21) is solved from which the coefficient vector C and the 

Lagrange multiplier λ  can be found. In table 1, a comparison is made between the exact 

solution together with the approximate values using the present approach,                           

for 22 == r,N . Since                   is a continuous vector we get a continuous solution 

for )t(x . 
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Table 1. Estimated and exact values of x(t) 

t Exact Hybrid functions N=2, r = 2 

0 0 0 

0.1 0.04195 0.04194 

0.2 0.07932 0.07932 

0.3 0.11247 0.11242 

0.4 0.14175 0.14177 

0.5 0.16744 0.16745 

0.6 0.18981 0.18982 

0.7 0.20907 0.20902 

0.8 0.22541 0.22547 

0.9 0.23901 0.23902 

1 0.25 0.25 

4.2 Example 2. Application to the heat conduction problem 

Consider the extremization of 

 
(22) 

where )t(g  is a known function satisfying 

  (23) 

with the boundary conditions  

.)(x,)(x 01    00 ==  (24) 

Schechter[13] gave a physical interpretation for this problem by noting an 

application in heat conduction and [1] considered the case where )t(g is given by 

 
(25) 

and gave and approximate solution using Walsh function. The exact solution is 
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Here, we solve the same problem using hybrid functions. First we assume 

).t(HC)t(x T=  
In view of Eq.(25), we write Eq.(22) as 

 

or 

Let  

 

then, using Eq.(8) we get 

 (26) 

The boundary conditions in Eq.(24) can be expressed in terms of hybrid functions as 

.)(HC,)(HC TT 01    00 ==  (27) 

We now minimize Eq.(26) subject to Eq.(27) using  the Lagrange multiplier 

technique . Suppose 

),(HC)(HCJJ TT* 10 21 λλ ++=  
where 1λ  and 2λ  are the two multipliers.Using Eq.(16) we get 
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The computational results for 22 == r,N  together with the exact solution )t(x are 

given in table (2). 
Table 2. Estimated and exact values of x(t). 

t Exact Hybrid functions N=2, r = 2 

0 0 0 

0.1 0.005 0.00512 

0.2 0.02 0.02014 

0.3 0.04 0.04012 

0.4 0.035 0.03499 

0.5 0 -0.00007 

0.6 -0.045 -0.04512 

0.7 -0.08 -0.08001 

0.8 -0.105 -0.10477 

0.9 -0.12 -0.12012 

1 -0.125 -0.12015 

 

5. Conclusion 

In the present study, the hybrid functions, which are the combinations of block-pulse 

functions, and Hartley functions are used to solve variational problems. The problem 

has been reduced to a problem of solving a system of algebraic equations. The 

integration of the cross product of two hybrid function vectors is a diagonal matrix, 

hence making hybrid functions computationally very attractive. 
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