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Abstract

A direct method to determine numerical solutions of linear Volterra integro-differential
equations is presented in this paper.. This method is based on block-pulse functions and its
operational matrix. By using this approach, the integro-differential equation reduces to a
linear lower triangular system of algebraic equations which can be solved easily. Some
numerical examples are provided to illustrate accuracy and computational efficiency of the
method.

MSC: 45J05; 41A30

1. Introduction

Many problems of theoretical physics and engineering lead to integro-differential
equations. An integro-differential equation involves one (or more) unknown functions
x(t) and both of its differential and integral. Such a description covers a very broad
class of functional relations [1],[2]. To solve these equations, several analytic and
numerical approaches have been proposed [1],[2],[3]. In recent years, some different
numerical methods to solve integro-differential equations were presented [4],[5].

The direct approach, proposed in this paper, applies block-pulse functions(BPFs) and
its operational matrix and transforms a Volterra integro-differential equation to a linear

lower triangular system of algebraic equations which can be easily solved. The numerical
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results of the examples illustrate efficiency of this method.

2. Block-pulse functions
Block-pulse functions have been studied by many authors and applied for solving

different problems [6],[7],[8].

2.1. Definition
An m -set of block-pulse functions(BPFs) is defined over the interval [O,T)as:

iT, i+

1,
@(t)= m m (D

0, otherwise,

where i =0, 1,...,m — I with a positive integer value for m . Also, consider/ = T/ m, and
¢. is the i th block-pulse function.

In this paper, it is assumed that7 = 7, so BPFs is defined over [0,] ), and h = I/m.
There are some properties for BPFs, the most important properties are disjointness,
orthogonality, and completeness.

The disjointness property can be clearly obtained from the definition of BPFs:

_ ¢i(t)’ i:j’
¢i(t)¢j(t)—{0, i 2)

where i, j=0,1,...m—1.
The other property is orthogonality. It is clear that:
1
[ o(t)g,(t)dt=hs,, (3)
where J, is the Kroneker delta.

The third property is completeness. For every f e L*( [0,] )) when m approaches to

the infinity, Parseval's identity holds:

[rmar=y sl o)
where
] 1
fi=o ], £(0o(1)dr 5)
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2.2. Vector forms

Consider the first m terms of BPFs and write them concisely as m -vector:

P(1)=[p(1).0,(1)cf (] 1€0.1) (©6)
above representation and disjointness property, follows:
d(t) 0 .. 0
D(1)D"(1)= ¢’(:t) . ? : @)
0 0o ... ¢,,(t)
D' (1)D(1)=1, )
D)D" (1)V =V (1), )

where V is an m -vector and V = diag(V ). Moreover, It can be clearly concluded that

for every mXxm matrix B :
D" (1)BD(1)=B P(1), (10)

where Bis an m -vector with elements equal to the diagonal entries of matrix B .

2.3. BPFs expansion
The expansion of a function f(t)over [0,]), with respect to@.(t), i =0,1,...,m—1

may be compactly written as:
m—1

()= [,6.(1)=F'®(1)=D"(1)F, (11
i=0

where F = [fo,f],...,fm_]]Tand f; s are defined by Eq.(5).
Now, assume k(t,s) is a function of two variables in LZ([O,])X[O,])). It can be
similarly expanded with respect to BPFs as
k(t,s)=@"(t)K¥(s), (12)

where @(t )and ¥(s) are m, and m, dimensional BPF vectors respectively, and K is
the m, X m, block-pulse coefficient matrix with

k., i=0,1,..m,—1, j=0,1,..,m,—1 asfollows:

ij}

ky =mm, [ [ k(t,5)9,(0 ) (5 )duds. (13)

For convenience, we put m, =m, .
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2.4. Operational matrix

Computing J‘Ot ¢.(7)dt follows:

0, t <ih,
[ o@dr={t-in, in<i<(i+1), (14)
h,  (i+1)h<t<l.

Note that 7 —ih, equals to /2, at mid-point of [ih,( i+1 )h]. So, we can approximate
t—ih,for ih<t<(i+1)h,by h/2.

Now, expressing _[ Ot ¢.(7)dt, in terms of the BPFs follows:

_[ot¢,.(T)dz'":'{0,...,0,§,h,...,h}§b(t) (15)
in which #/2,is i th component.
Therefore
[ @()dr=Pa(1), (16)
where P, 1is called operational matrix of integration and can be represented:
12 2 ... 2
. o1 2 .. 2
P=—10 0 1 2| A7)
2. .. .
0 0 0 .. 1

So, the integral of every function f() can be approximated as follows:

[ f(r)drsjo’FTqb(r)drzFTqu(z). (18)

3. Direct method
In this section, a direct method is proposed to solve Volterra integro-differential
equations. For convenience, we consider the following linear first order Volterra integro-

differential equation of the form:

x’(t)+q(t)x(r):f(t)+/1j; k(t,s )x(s)ds,
x(0)=1x,

(19)

In the above equation, f(t), g(t)and k(t,s )are known functions but x( 7 )is not.
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Moreover, k(t,s )e L*( [0,] )x [0,] ) and f(1),q(t)e L*( [0,] ). Note that the appearance
in Eq.(19) of initial condition equation. This is necessary to ensure the existence of a
unique solution.
Approximating functions x(t), x'(t), f(t), q(t), and k(t,s) with respect to BPFs

by Eqgs.(11) and (12) gives:

xt)=X"D(t)=d"(1)X

X(t)=X"D(t)=D"(t)X’

f(t)=F"d(t)=D"(t)F (20)

q(t)= Q" P(1)=P"(1)Q
k(t,s)=®"(1)KD(s)

such that the m-vectors X, X', F, O, and mxm matrix K are BPF coefficients of
x(t), x(t), f(t), q(t), and k(t,s), respectively. Note that in Eqs.(20), X and X are

unknown vectors. With substituting Egs.(20) into Eq.(19) follows:
D)X +Q"D(t)D"(1)X = ch(t)F+lJ'0t D' (t)KD(s)D"(5)X ds

quT(r)FquT(t)Kjo'qb(s)qu(s)de. el
Using operational matrix and Eq.(9) gives
DT(1)X +DPT(1)0X =D (1 )F+DP (1 )AK X PD(1). (22)
Now, AK X P is an mxm matrix. From Eq.(10) follows:
DT(t)AK X PD(1)=X"P(t), (23)

where X is an m -vector with components equal to the diagonal entries of matrix
AKXP. So, combining Eqgs.(22) and (23) gives

D)X +DP(1)0X =D (1 )F+D"(1)X, (24)
or
X'+0X=F+X. (25)

Now, X’ must be computed in terms of X . Note that
x(t)=x(0)=[ x(7)dz
= [ X"®(7)dz (26)

=X"Pd(t)
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Therefore
x(t)=X"PD(t)+ X, D(1), 27)

where X, is the m-vector of the formX, =[x0,x0,...,x0]T, consequently, using
Eq.(20) we have
X'=(P")(X-X,). (28)

Substituting Eq.(28) into Eq.(25) and replacing = with =, we obtain
(I+P"Q)X-P'X=P' F+X,. (29)
Eq.(29) 1s a linear lower triangular system of m algebraic equations with m
unknowns, components of X , which can be easily solved by forward substitution. So,
an approximate solution x(7)= X'&(t), is obtained for Eq.(19). Note that this

approach does not use any projection method such as collocation, Galerkin, etc.

4. Numerical examples
Two examples are presented in this section to illustrate computational efficiency of
the approach proposed in this paper. In these examples, the approximate solutions are
briefly compared with exact solutions only at nine specific points. But, it must be noted
that at mid-point of every subinterval [ih,( i+1 )h], for i =0,1,...,m— 1, the approximate
solution is more accurate. Moreover, this accuracy will increase as m increases. This
can be clearly followed from definition of operational matrix P .

All computations were performed using Matlab 7 on a Personal Computer.

Example 1. Consider the following integro-differential equation [2]:

’ _ 1, ' !
x(t)——]+5t —te —josx(s)ds, (30)

with the initial condition x(0 )= 0, and the exact solution x(f)=1—e". See Table 1 for

numerical results.

Example 2. Consider the following integro-differential equation:

x'(t)z—te'—e_t+J.Ol e™ x(s)ds, 31

. The numerical

with the initial condition x(0)=1, and the exact solutionx(t)=e"
results are shown in Table 2.
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Table 1: Numerical results for example 1
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t Exact solution Approximate Approximate
solution, m=64 solution, m=128
0.1 -0.105171 -0.106933 -0.102592
0.2 -0.221403 -0.215727 -0.220458
0.3 -0.349859 -0.356241 -0.350924
0.4 -0.491825 -0.489539 -0.495336
0.5 -0.648721 -0.661699 -0.655186
0.6 -0.822119 -0.825017 -0.817865
0.7 -1.013753 -1.004387 -1.012193
0.8 -1.225541 -1.236052 -1.227294
0.9 -1.459603 -1.455819 -1.465389
Table 2: Numerical results for example 2
t Exact solution Approximate Approximate
solution, m=32 solution, m=64
0.1 0.904837 0.896495 0.903450
0.2 0.818731 0.816261 0.822599
0.3 0.740818 0.743208 0.737371
0.4 0.670320 0.676693 0.671383
0.5 0.606531 0.597173 0.601822
0.6 0.548812 0.543729 0.547965
0.7 0.496585 0.495070 0.498927
0.8 0.449329 0.450767 0.447235
0.9 0.406570 0.410432 0.407214

5. Conclusion

The direct method based on BPFs and its operational matrix to solve Volterra

integro-differential equation arising in many physical and engineering problems is

presented. This approach transforms a Volterra integro-differential equation to a linear

lower triangular system of algebraic equations. Its applicability and accuracy is checked

on two examples. In these examples, the approximate solution is briefly compared with

exact solution only at nine specific points. But, it must be noted that at mid-point of

every subinterval [ih,( i+1 )h], for i=0,1,...,m—1, the approximate solution is more

accurate and this accuracy will increase as m increases. On the other hand, some points

farther to mid-points may get worse as m increases. Of course, these oscillations are

negligible. This can be clearly followed from definition of operational matrix P. As

illustrated in Eqs.(14) and (15), the diagonal elements //2 of operational matrix P are
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approximate values of 7 —ih. Note that, at mid-point of every subinterval [ih,( i+1 )h]
the diagonal elements of operational matrix are exactly i/2 . In general, It follows from
numerical results that the accuracy of the obtained solutions are reasonable.

The advantages of this method are low cost of setting up the equations without
applying any projection method such as Galerkin and Collocation methods. Also, the
linear system (29) is a lower triangular system which can be easily solved by forward
substitution with O(m’ ) operations. Therefore the count of operations is very low.

Finally, this method can be easily extended and applied to Volterra integro-
differential equation of any order and systems of integro-differential equations with
suitable initial conditions.
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