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 Abstract  

By using  Berwald connection, we show that there are  linear connections � which are 

projectively equivalent and belong to the same  projective  structure on ��� We found a 

condition for the geodesics of the Berwald connection under which � is complete.   

 

Introduction 

     Two (torsion free) linear connections � and �� on a smooth   manifold � are said to 

be  projectively equivalent if there  exist a 1-form �  on � such that 

��������� 	 � 
 �� 
�� 
 
� � �� 
where �� denotes the identity (1,1)-tensor on ��� Projective equivalence is an 

equivalence relation on the set of torsion-free linear connections on �, and an 

equivalence class will be called a projective equivalence class [6]. Projective 

equivalence can be related to the concept of a projective structure. If � has dimension 

�, then a projective structure on �  is a principal subbundle of the bundle of 2-frames 

over � having as its structure group the isotropy subgroup of ������ �� at the origin of 

real projective space ���, [4]. 

According to this remark, we can introduce a projective structure on ��� Since the two 

(torsion free) linear connections on �� belong to the same  projective structure on �� 

if and only if  they are projectively equivalent, a projective equivalence class consists of 

those (torsion free) linear connections on �� which belong to the same  projective  

structure on ���   
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In Finsler geometry, examples of important connections are proposed by L. Berwald 

[2], E. Cartan (1934), S. S. Chern [1] and  Z. Shen [7]. Some of these connections are 

torsion free, for a list of almost all Finsler connections, one can refer to Bidabad and 

Tayebi [3]. So if we use a Finsler connection then we can show that  there are many 

linear connections on �� contained in the same projective equivalence class on �� 

induced by this Finsler connection. For example in case of Berwald connection, we 

show that there is a linear connection ��on �� which is projectively equivalent to the 

Berwald connection and belong to the same  projective  structure on ��� We find a 

condition for the geodesics of the Berwald connection under which � is complete ( to 

see a similar problem in the Riemannian case, refer to Spivak [6]). 

 

Preliminaries 

Let � be an n-dimensional ��� manifold. Denote by ����� the tangent space at 

� � ��� and by ���	���� ������the tangent bundle of �. Each element of �� has the 

form ��� !�� where � � �� and ! � ������ Let ��" 	 ��� # $�%&� The natural projection 

'���� ( ��� is given by '���� !�� 	 ��. 

A (globally defined) Finsler structure  [1] on a manifold � is a function  )� �� (
�*%���� 
with the following properties: 

(i) Regularity: ) is �� on the entire slit tangent bundle ��"��
(ii) Positive homogeneity: )��� +�!� 	 +�)��� !� for all +� , %� 
(iii) Strong convexity: The � - �� Hessian matrix 

��./0��� 	 1234�)5678�79:�
is positive-definite at every point of ��". 
Given a manifold � and a Finsler structure ) on �, the  pair ��� )� is called a Finsler 

manifold. )  is called Riemannian if ./0���� !� are independent of ! ; �%�  
Let � be a real n-dimensional connected manifold of ��-class and ���� '��� its 

tangent bundle with zero section removed. Every local chart �<� = 	 ��/�� on � 
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induces  a local chart �=>?�<�� = 	 ��/ � !/���on ��. The kernel of linear mapp 

'@� ��� ( ��� is called the  vertical distribution and is denoted by A��� For every 

B � ����CDE�'@�F 	 AF�� is spanned by  $ GG78 HIF&. By a  nonlinear connection on �� 

we mean a regular n-dimensional distribution J� B � �� ( JF�� which is supplemen-

tary to the vertical distribution i.e. 

���F���� 	 JF��K�AF��� L�B � ���� 
A basis for �F�� adapted to the above direct sum is  � MM�8 HIF� GG78 HIF ), where 

N
N�/ HIF 	

O
OPQ # RQS�T�

O
OUS � HIV 

and W0/ are coefficients of the nonlinear connection. The dual basis of X MM�8 � GG78Y is given 

by ���/ � �!/ 
W0/��0�� These are the  Berwald bases. 

 

A complete linear connection 

     Let � be a linear connection on a manifold �. A curve Z� �[� \� ( � is an 

inextendible geodesic of � iff Z is a geodesic of �  and has no extension to *%� \ 
 ]� as 

a geodesic of � for any ] , %� The connection � is complete iff every geodesic of � 

defined on a subinterval of �  extends to a geodesic of � defined on all of  �� 
     In what follows, by using Berwald connection, we want to construct a linear 

connection ��on �� which are projectively equivalent and belong to the same  

projective  structure on ���  We first define notion of Berwald connection. 

Let � be a real n-dimensional �� manifold and A�� 	���^��_ � Â �� its vertical 

vector bundle. Suppose that J�� 	���^��_ J^�� is a non-linear connection on ��� 
The Berwald connection induced by a nonlinear connection with  local coefficients W0/ 
is a linear connection with the local coefficients 

G 8̀aG79 � (see [5]). 

For example, consider b as a semispray  with local coefficients �/ and W the induced 

nonlinear connection with local coefficients W0/ 	 Gc8
G79� Since the nonlinear connection is  

symmetric then the Berwald connection � induced by W is a linear connection and  has 

the expression  
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� M
M�8
�� NN�0 	

d5�e
d!/d!0 �

N
N�e ����� G

G78
�� NN�0 	 %� 

�� M
M�8
� dd!0 	

d5�e
d!/d!0 �

d
d!e � � G

G78
� dd!0 	 %�� 

Theorem 3.1 Let � be a Berwald connection induced by the nonlinear connection W 

associated to a semispray and ) a nonzero Finsler metric. Then there is a linear 

connection �  on ��  defined by  

�f�g� 	 �f�g� 
 34) ��)�h�g 

3
4) �)�g�h����Li� j � ���kl�����������������������3� 

Proof. With respect to the Berwald basis, � has the expression 

� M
M�8
�� NN�0 	

ORQmOUS �
N
N�e 


3
4) n

N)
N�/

N
N�0 


N)
N�0

N
N�/o 

� M
M�8
�� dd!0 	

ORQmOUS �
d
d!e 


3
4) n

N)
N�/

d
d!0 


d)
d!0

N
N�/o 

� G
G78
�� NN�0 	

3
4) n�

d)
d!/

N
N�0 


N)
N�0

d
d!/o 

� G
G78
�� dd!0 	

3
4) �n

d)
d!/

d
d!0 


d)
d!0

d
d!/o 

It is not difficult to show that the coefficients of � satisfy the transformation law for the 

coefficients of a linear connection on ���  
For  the linear connection (1),  we consider the torsion  �� defined as usual 

��h� g� 	 �f�g� #����p�h� # *h� gq����L�h� g � r������
With respect to the Berwald basis we have  

� n NN�/ �
N
N�0o 	 1

NW/eN�0 #
NW0eN�/ :

d
d!e � 

� n NN�/ �
d
d!0o 	 %�� 

�� n dd!/ �
N
N�0o 	 %�� 

� n dd!/ �
d
d!0o 	 %��
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Theorem 3.2 Let � be the Berwald connection and let � be the linear connection 

defined in theorem 3.1. If every inextendible geodesic of  �� such as Z� *%� \� ( ��� has 

an orientation preservation reparametrization s� *%���� ( *%� \� such that Z�ts�is a 

geodesic of �� then � is complete. 

Proof. Let Z� *%� \� ( �� be the inextendible geodesic of � with Z��%� 	 �B� u�� There 

is an orientation preserving  reparametrization s� *%���� ( *%� \� such that  Zv 	 �Z�t�s is 

a geodesic of �� So we have Zv��%� 	 +�Z��%� for some positive constant +. Then   

 Zw� *%��� ( ��� given by  Zw�x� 	 Zv�yz� is also a geodesic of � and  Zw��%� �	 �B� u�� 
Thus  � is complete. 

Let the hypotheses of 3.2 hold. If Z� �[� \� ( ��� is a geodesic of � and s� �]� {�� (
��[� \� an orientation preserving reparametrization of Z such that Zv 	 Z�t�s is a  

geodesic of �� then ��| ��y��Z��x� �	 %� Let x 	 s�}� for } � � �]�� {�� So  Zv ��}� 	
s ��}�Z�~s�}�� 	 �y

��
�|
�y HIy������  Since 

��|�� �
�Z
�} 	 ��|�� �

�Z
�} 


3
) �)�

�Z
�}��

�Z
�} 

thus 

�x
�}�1�n

�x
�}o

>? � �5x�}5 

�����)��
�} : �Z�x 	

�x
�} �

�
�} �� n)

�x
�}o��

�Z
�x 	 %���

This shows that ) �y�� is constant. As Finsler metric is positive function, so there is a 

constant �? , % such that )� �y�� 	 ?
��� This differential equation can be integrated to give 

���������������������������������������}�x� 	 s>?�x� 	 �" �
 �? �� �yy� �)~Z������                               (2) 

where x" � � �[� \�� �" � ����      
Theorem 3.3 Let )��� !� be a nonzero Finsler metric, If for each inextendible geodesic 

of  �� such as Z��*%� \� ( ���� we have  

� ��" �)~Z�x���x� 	 �                                                     (3) 

then the connection � defined by (1) is complete. 

Proof. Suppose that the condition (3) holds. Let Z��*%� \� ( �� be such a curve and let 

s��*%� {� ( � *%� \� be an orientation preserving reparametrization of Z such that  

�Zv 	 Z��t��s is a geodesic of �. From (2),  s>?�x� is given by  
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s>?�x� 	 �?� �
y
y�
)~Z������ 

with �? , %� But {� 	 �? �� ���y� )~Z������ 	 ��� so inextendible D-geodesic Z has an 

orientation preserving reparametrization�s��*%��� ( *%� \� such that Z��t��s�is a geodesic 

of � and so � is complete.  

We showed that two linear connections introduced in this paper, the Berwald 

connection � and the linear connection � defined in theorem 3.1, are projectively 

equivalent and belong to the same  projective  structure on ��� We have also proved 

that for each inextendible geodesic of  the Berwald connection such that the condition 

(3) holds then  the connection � is complete. 

     For example, let  � 	 �� # $%& and let  ) be a nonzero Finsler metric such that for 

each � � �� �I_� � is a Minkowski norm on ���� Consider the curve Z� *%� \� � �� 

given by Z�x� 	 � 
 �x��� !� where ! ; %� and  \ 	 �� With respect to this curve, it can 

be easily shown that the equation (3) is established.  
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