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Abstract
In this paper rationalized Haar (RH) functions method is applied to approximate the
numerical solution of the fractional Volterra integro-differential equations (FVIDES). The
fractional derivatives are described in Caputo sense. The properties of RH functions are
presented, and the operational matrix of the fractional integration together with the product
operational matrix is used to reduce the computation of FVIDEs into a system of algebraic
equations. By using this technique for solving FVIDEs computation time is low. Numerical
examples are given to demonstrate application of the presented method with RH functions
base.
Introduction
In resent years, many important problems in fluid mechanics, viscoelasticity,
electromagne-tics, chemistry, biology, physics, engineering and other areas of science
can be modeled by fractional derivatives and integrals, see [1], [2]. In this work, we
study numerical solution of FVIDEs of the type
X
D% y(x) = f(x) + gX)y(x) + )Lfo k(x, t)G(t,y(t))dt, (D

0<x <1, n-1<a<n, neN,
with n initial condition
yi(0)=§, i=0,123,..,n—1, (2)
where «D* is Caputo's fractional derivative and o is a parameter describing the order of
fractional derivative. Also, A is a real known constant, f,g €L2([0,1]) and k €L2([0,1]9)
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are given functions, y(x) is the solution to be determined and G(t,y(t)) is an analytic
function of the unknown function y(x). Such kind of equations arise in the mathematical
modeling of various physical phenomena, such as heat encountered in combined
conductions, convection and radiation problems [3], [4], [5]. Since, FVIDEs are usually
difficult to be solved analytically, several methods have been used for the solution of
FVIDES. Examples of such methods are, Adomian decomposition method (ADM) [6],
[7], Spline collocation method [8], Fractional differential transform method [9],
Homotopy pertubation method [10], Operational Tau method (OTM) [11] and other
methods [12], [13], [14]. Ordokhani [15] has described the orthogonal set of Haar
functions and transformed it to RH functions. In this method, we want to expand the
«D%y(x) by RH functions with unknown coefficients and by using Newton-Cotes nodes
[16] we can evaluate the unknown coefficients and find an approximate solution to Eq.
().

The article is organized as follows:

In section 2, we will introduce some necessary definitions and preliminaries of the
fractional calculus theory. We shall present the properties of RH functions required for
our subsequent development in section 3. Section 4 is devoted to the solution of Eq. (1)
by using RH functions, and in section 5 we will report our numerical findings and

demonstrate the accuracy of the proposed method by numerical examples.

Definitions and preliminaries

In this section, we give some definitions and mathematics preliminaries of the

fractional calculus theory.

Definition1. The Riemann-Liouville fractional integral operator of order a is defined as

[2], [17]
1

Iy (x) = O]

X
J x—0)*ly)dt, a>0, x>0,
0

°y(x) = y(),
whrere I'(.) is Gamma function. It has the following properties:
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[y = ry+1)

=Ty > —1.
T(o+y+1) ¥

Definition2. The Caputo definition of fractional derivative operator is given by [18],
[19]
L 1y
D¢ _ [n—-a DT _ _ f\n—a— n
2 y(x) = "D y(x) = -0 .l; x—1t) y'™ (t)dt,

where n-1<a<n, neN, x>0.
It has the following properties
LT y(x) = y(x),

n-1
k
o X
42" () = yG) - ) y® (0, x>0,
k=0 '

Properties of rationalized Haar functions

1. Rationalized Haar functions
The RH functions h; (x), r=1,2,..., are composed of three values +1, -1 and 0 can be

defined on the interval [0,1) as [15]
11 ]1 S x < Il/z

h(0=4-1  Jy, <x<Jg ©

_ 0, otherwise
where ], = ];—lu u= O,% 1.
The value of r is defined by two parameters i and j as
r=2+j-1, i=0123,.., j=123,..,2,
ho(X) is defined for i=j=0 and given by
hgx) =1, 0 <x<L1. 4)
The orthogonality property of RH functions is given by

flhr (x) hy(x)dx = {2—1’ fov,
0

0, r+#v,
where
v=2"+m-1, n=0,123,.., m=1,273,..,2"

2. Function approximation
A function f(x) € L%([0,1]) may be expanded into RH functions as [15]

60 = ) erhe () (5)
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where c, given by

1
C, = zif fx) h,(x)dx, r=0,12,..,
0

with r=2'+j-1, i=0,1,2,3,..., j=1,2,3,...,.2" and r=0 for i=j=0.
The series in Eq. (5) contains an infinite number of terms. If, we let i=0,1,2,..., then the

infinite series in Eq. (5) is truncated up to its first m terms as

m-—1

)= ) ¢ heG) = Ch Hn(¥) ()

r=0

where, m = 281, 3 =10,1,2,3, ...

The RH function coefficient vector C,, and RH function vector Hy(x) are defined as

Cm = [Co, €1, vy Cm—1]", (7)
Hm (%) = [ho(x), hy (%), e, h—1 (O], €)
Also, we can expand the function k(x,t) € L?([0,1]%) into RH function as
m-1m-1
kGO = ) ) Kurhy(9) by (9
v=0 r=0

where
) 1 1
Ky = 2‘+nf f k(x,t) h.(x) h,(t)dx dt
0 0

Hence we have

k(x,t) = HL () KHy(D), (9)
K= (kvr)'11;1><m- (10)
Taking the Newton-Cotes nodes as following [16]
2i—1 ,
X; = T i=1,2,.., m. (11

The m-square Haar matrix ®m«m can be expressed as

= ) ). (5

for example if m=8 we have
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1 1 1 1 1 1 1 1
11 1 1 -1 -1 -1 -1
1 1 -1 -1 0 0 0 0

©.. -0 0 0 0 1 1 -1 -1

<8711 -1 0 0 O 0 0 OofF
0o 0 1 -1 0 0 0 O
o 0 0 0 1 -1 0 O
o o 0 0o 0o 0 1 -1

Using Eq. (6) we get

()Y w09

From Eqgs. (10) and (13) we have

_ ~ _ -1
K=(@_ )" KOpm, (14)
where
K= (kj,)m xm, k -1 2p-1., 1=1,2,...,m.
tae) e

3. Operational matrix of the fractional integration
The integration of the vector Hy,(x) defined in Eq. (8) can be expanded into Haar

series with Haar coefficient matrix Pyxm as follows [15]
X
[ Hin (Ot = P Hin 0, (15)
0

where P« is called the RH functions operational matrix of integration. In this section
our purpose is to derive the RH functions operational matrix of the fractional integration

[12]. For this purpose, we consider an m-set of block-pulse functions as

1 i x< i+1
b; (x) ={ "m ~ X m
0, other wise,

where i=0,1,2,...,m-1.

The function bj(x), are disjoint and orthogonal. That is

(0, P %,
b,GOb 00 =) i)
1 0, 1#],
f bGObddx =11 .
0 al 1:];

The RH functions may be expanded into an m-set of block-pulse functions as
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Hm(X) = q)mxmBm(X): (16)
where Bm(x) =[bo(X),b1(X),....bm-1(})]" and ®mxm is an mxm matrix defined in Eq. (12).
In [20], Kilicman and Alzhour have given the block-pulse operational matrix of the

fractional integration F* as follows:

[“B,(x) = F*B (%), a7
where
1S S & v S
. . 0 1 & & .. &,
«_ > 0 0 1 ¢& .. &
K= m*T(a+1) [: : ! : v (18)
0 0 0 O &
0 0 0 O 1

with & =(k+1)"* - 2 k*"'+ (k-1)**.
Next, we derive the RH function operational matrix of the fractional integration.
Let

[*Hpy (%) = PlixmHm (%), (19)
where P2, is called the RH functions operational matrix of the fractional integration.
Using Eqgs. (16) and (17), we have

[Hp, (X) = @pysmBm (X) = @pysem "B (%) = @pysn F*B (%),
from (16) and (19), we get
PiixmHm (%) = Prsm @mxmBm (%) = @ryxm F*Bm (%).
Then, P%ym IS given by
Piixm = ConxmF* Py (20)

where, ®%., is inverse of matrix ®mxm.

Therefore, we have found the operational matrix of fractional integration for RH

functions.
For example, let m=4, then we have
35"1+E’2+ +1 _é_l_i_2_<:_3 _E’_Z _é_3
4 2 4 2 2
él iz i_ _%_ % _& _5
P = 1 1 t5 T 4 4 2 4 +1 2 é1 2
P& 40T a_3 b b 1-5 ¢ _H_5&
4 2 4 2 2 2 4
4 _& 0 1 &
4 4 2
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and for a=0.25, the operational matrix P32> can be expressed as following

0.8826 —0.1404 —0.1181 —0.0433
pozs _ |0.1404 06018 —0.1181 0.1928
44 710.0217 0.0964 0.5060 —0.0420(

0.0590 —0.0590 0 0.5060

3.4. The product operational matrix
In this work, it is necessary to evaluate the product of Hy, (X) and HJ (x), that is
called the product matrix of RH functions.

For this purpose, let

Hm(X)H;(X)Cm = memHm(X): (21)

where vector Cp, is what defined in (7) and C,,x,, is mxm-dimensional coefficient
matrix.

Using (16), we have

Hum COHR () Cm = Prnsem B () BR () Pinscn Cins (22)
Let
Ch = OpmCm = [€5, €L o, g . (23)
From Egs. (16), (21), (22) and (23), we have
Hm GOHR ()Cm = CrnxmHim () = Prnsen e P Hm (%), (24)

where Clyum = diag(cs, ¢}, ..., cih_ ), is the product operational matrix of block-pulse
functions.
~% _1

Therefore, we have the coefficient matrix as C,,xm = P Comxm@rmxm-

For m=4 we have

[Co C1 C C3
€1 € C —C3
a . ) (%)
Cyxq = > 5 Sto 0
C3 C3 0
= —= Co—¢C
> 2 0 1

Solution of FVIDEs
In this section we consider the FVIDESs given in Eq. (1). To solve for y(x), we first
approxmate*>” y(x) as

Py = CpHip (), (25)
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where Cp, is the RH functions coefficient vector and Hp, (x) is RH functions vector.By
using the initial conditions in Eq. (2) and Egs. (19), (25) and properties of Caputo
derivative we have
DY) = 1Dy () + 17D (0) = P HW () + 8,1,
D" y(x) = (Ch Pt + 81T PnlemPhcan ) Hin (%) + 8,

y() 2 (C) Pl + €T Ol T2 8 (Phcn) YHin () (26)
where
e=(1,1,...,1)", P} .., is operational matrix of RH functions defined in Eq. (15) and P°=I is

mxm-dimensional identity matrix.

Also, we let
z(x) = G(xy(x)). (27
Suppose z(x), f(x), g(x) and k(x,t) can be expressed approximately as
2()=Zm Hn (), f(X)=Fy Hn(®),  900)= G Hm(x),  K(x,)=Hg (%) K Hpn(0), (28)

where Z,,, Fr,, G, and K are given in Egs. (6) and (14) respectively.
Using Egs. (9), (15), (24) and (28), we have

Jy kG DG(ty(t)dt = [ Hy (x) K Hy (DHg (1) Zindt = H () KZ,y Py Hiy (), (29)
Let
n—1
An = (Ch P + €05k > 8 Ph)) (30)
i=0

with substituting Egs. (25), (26), (28), (29) and (30) in Eq. (1), we have
CoHy () = FaH, (0 + G H, (OH (A, + AH KZnP,,  H,, (X), (31)

by using (24), Eq. (31) can be written as
CoHp () = FLHL(X) + GLAH, (%) + ML (OKZn Py Hin (%), (32)
from Eqgs. (26), (27), (28) and (30) we get
ZTH, (x) = G (x, AT Hm (x)). (33)
In order to construct the approximation for y(x) we collocate Egs. (32) and (33) in m
points. For a suitable collocation points we choose Newton-Cotes nodes defined in Eq.

(11). By using Eqgs. (8), (11) and (12) we have

Hm(Xi) = (Dmeei: 1=12,..,m,
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where
e;=(0,0,...,0,1,0,..,00T.

i—1 m—i

Then, Egs. (32) and (11) can be expressed as

Cl—E‘chmeei = F£®meei + Gr—l;l Kmq)mxmei + ke?(l);l;leK szmeq)meei
Zl—gl (Dmeei = G(XiJ A}‘;l (Dmxrnei)' (34)
i=20123,.., m

Therefore, we convert Eq. (1) to the systems of algebraic equations. Eq. (34) can be
solved for the unknowns C,, and Z,,, then the required approximation to the solution
y(x) in Eq. (1) is obtained.

Numerical examples
In this section, we apply the present method and solve some examples that were
given in different papers. All calculations were performed using MATLAB software.

Example 1. Consider the following nonlinear FVIDE ([11])

3 4
D y(x) =x (-1+esm")-sinx-f0x x3cost e¥Odt, x>0, 1<a<2,

with the initial conditions:
y(0)=0, y(©0)=1

The only case which we know the exact solution for 0=2 is y(x)=sinx.
We have solved this example for m=128 for different a and have compared it with
OTM method [11]. The comparison is shown in Table 1 and Table 2.

Note that in the theory of fractional calculus, it is obvious that as o (n-1< a <n)
approaches to positive integer number n, then the numerical solution continuously
converges to the exact solution of the problem with derivation n. i.e. in the limit, the

solution of fractional equations approaches to integer-order equations [11], [19].
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Tablel. Comparison of the solution of OTM and RH for different o of example 1

a=1.25 a=1.5 a=1.75 Exact
Yorm YRu Yotm YRu Yorm YRu for a=2
0.0 0.000000 | 0.000000 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
0.1 0.097355 | 0.097793 0.098677 | 0.099047 | 0.099419 | 0.099597 | 0.099833
0.2 0.185847 | 0.189532 | 0.193716 | 0.194627 | 0.196812 | 0.197299 | 0.198669
0.3 0.272375 | 0.274037 0.283807 | 0.285247 | 0.290975 | 0.291790 | 0.295520
0.4 0.347526 | 0.350668 0.367799 | 0.369858 | 0.380815 | 0.381966 | 0.389418
0.5 0.412246 | 0.419073 0.444601 | 0.447660 | 0.465333 | 0.466862 | 0.479425
0.6 0.464013 | 0.479133 | 0.513081 | 0.518045 | 0.543605 | 0.545631 | 0.564642
0.7 0.499207 | 0.531011 | 0.571968 | 0.580614 | 0.614770 | 0.617556 | 0.644217
0.8 0.512786 | 0.5751171 | 0.619749 | 0.635167 | 0.678009 | 0.682040 | 0.717356
0.9 0.497956 | 0.612450 | 0.654568 | 0.681736 | 0.732528 | 0.738624 | 0.783326
1.0 0.445845 | 0.644121 0.674130 | 0.720628 | 0.777544 | 0.787000 | 0.841470
CPU - 7.7788 s - 6.2642 s - 6.0147 s -

Table2. Comparison of the solution of OTM and RH of example 1

oa=2 a=2
X
yOTM error yRH error
0.0 0.000000 0 0.000000 0
0.2 0.198669 0 0.198669 0
0.4 0.389418 0 0.389418 0

06 | 0564648 | 6.0000x107° 0.564640 | 2.9187x107°
08 | 0717397 | 5.1000x107° 0.717350 | 5.5916x10
1.0 | 0841666 | 1 9600x10~* 0.841471 | 47900x10~"

CPU - - 5.6256S -

The results in Table 1 show as a— 2, numerical results tend to exact solution of a= 2.
From Table 2 we conclude that approximate results with present method is in good
agreement with the exact solution when a= 2. So, for cases a= /.25, a= /.5 and

a= 1.75 that the exact solution is unknown present method is reliable tool.

Example 2. Consider the nonlinear FVIDE ([7,21,22])

*Dmy(x)=1+f0xe_t y(£)? dt, 0<x<1 3<qa<4,

with the boundary condition:

y(0) = y(0)=1,
yd) =y =e,
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The only case which we know the exact solution is for 0=4 and given by y(x) = e*. We have
solved this example for m=128 for different o and have compared it with methods of [22]. The

comparison is shown in Table 3 and Table 4.
Table3. Approximate and exact solutions for different a of example 3

Method of [22] Present Method Exact
X a=325 o=35 a=375 | a=3.25 a=3.5 a=3.75 for

a=4
0.0 | 1.000000 | 1.000000 | 1.000000 | 1.000000 1.000000 1.000000 | 1.000000
0.1 | 1.106551 | 1.106750 | 1.106151 | 1.105236 1.105194 1.105178 | 1.105170
0.2 | 1.223931 | 1.224324 | 1.223227 | 1.222011 1.221655 1.221484 | 1.221402
0.3 | 1.353200 | 1.353756 | 1.352308 | 1.352093 1.350861 1.350204 | 1.349858
0.4 | 1.495600 | 1.496270 | 1.494636 | 1.497436 1.494480 1.492783 | 1.491824
0.5 | 1.652553 | 1.653273 | 1.651615 | 1.660166 1.651950 1.650830 | 1.648721
0.6 | 1.825654 | 1.826354 | 1.824824 | 1.842597 1.832533 1.826128 | 1.822118
0.7 | 2.016687 | 2.017294 | 2.0160234 | 2..047219 2.031227 2.020643 | 2.013752
0.8 | 2.227634 | 2.228084 | 2.227176 | 2.276726 2.252871 2.236539 | 2.225540
0.9 | 2.460690 | 2.460931 | 2.460458 | 2.534034 2.500118 2.476198 | 2.459603
1.0 | 2.718281 | 2.718281 | 2.718281 | 2.822302 2.775866 2.742238 | 2.718282

CPU - - - 7.7788s - 6.0147 s -

Table4. Comparison of present method and method of [22] in case a=4

Method of [22] Present Method
Numerical Absolute Numerical Absolute
X solution error solution error
1.000000 0 1.000000 0
2(1) 1.105160 1.0000x10"° 1.105171 0.2860x 1010
0 1.221382 2 0000x10~ 1.221403 5.4492%10°
0 1.349829 2 9000103 1.349859 1.3930x10-7
o4 1.491788 2.6000x 10~ 1.491825 5 0993x10~*
05 1648681 4.0000x107° Loagrel 6.2063x1077
1.822078 1.822119
00 2013716 4.0000x10™° 2.013754 1.9676x107"
07 2.225513 3.6000x107° 2.205543 1.1158x10"°
08 2.459587 2.7000x107° 2.459604 1.6183x107°
09 2718282 1.6000x10™° 2.718280 8.9789x107"
L0 0 2.1930x107°
CPU R - 5. 6734s R

Numerical results in Table 4 show our numerical solutions using the RH functions is more

accurate than the numerical solutions obtained using the method of [22]. Therefore, we
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conclude that the solutions for o = 3.25, a = 3.5 and o = 3.75 that show in Table 3 are also
credible. In Table 3 as a— 4 numerical results tend to be the exact solution of o = 4 but
numerical results of method of [22] do not have this property. Although, for obtaining a good
accuracy with our method number of values must be very large but in this method computation
time is very low..

Example3. Consider the following FVIDE
3
*D2 y(x) = f(x) — fox cos(x — t) y(t)*dt,

y(0) = y(0) =0,
2

1
5 x2 and the exact solution is y(x) =x>.

where f(x) = 720 (x —sinx) — 120 x> + 6 x> +

We have solved this example for different m. The absolute error in Table 5 shows that the

accuracy improves with increasing the m.
Table5. Absolute error for different m of example 3

X m=8 m=16 m=32 m=64
00 0 0 0 0
o. ) 2.0042x107> | 1.3790x107> | 2.7975x10™* 1.3648x107*
0.2 55160x107> | 1.1190x107> | 5.4594x10™* 1.3911x107*
03 | 6.2680x107° | 1.3709x107 | 6.3356x10™* | 1.6980x 10~
0.4 | 4.4735x107° | 2.8321x107° | 5.5630x107* | 2.3325%x 107*
05 | 4.8269x107> | 1.7195x107> | 6.0926x10™* 2.1538x107*
0.6 | 5.4539x1073 | 2.5265x107° | 6.7714x10™* 2.7592x1074
0.7 | 8.2439x107> | 2.0628x107> | 8.7750x10™* |  2.5602x107*
08 | 8531410~ | 2.1743x10~* | 9.1878x10~* | 2.7110x10~*
0.9 6.2813x107> | 2.8480x107° | 7.9774x10~* 3.2023x1074

1

6.0884x107> | 2.2171x107° | 7.9890x10~* 2.8596x10~*
CPU 0.1533s 1.4405 s 1.8215s 2.49665
Conclusion

In the present work RH functions are used to solve the FVIDEs. We reduce the
FVIDEs to a system of algebraic equations via the RH functions and collocation points.
In this method time computations is short, because the matrix @, introduces in Eq. (12)
contain many zeros, and these zeros make the RH functions fast and easy to use.
Numerical examples with satisfactory results are given to demonstrate it is a useful tool

for solving the FVIDEs.
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