Volume 14, Issue 4 (6-2015)
Abstract
Polymerization of Acryric Acid co Acrylamide Hydrogel by Ultrasound R. Ebrahimi Department of Chemistry, College of Science, Takestan Branch, Islamic Azad University, Takestan, Iran Abstract High frequency sound wave, ultrasound, is widely used to facilitate chemical reactions, especially in the polymerization reactions.This paper reports a study which synthesized acrylic hydrogel in the presence of ultrasonic irradiation (20-kHz, power 80%, pulse 8) in a water/glycerol medium. Acrylic acid (AA) and acrylamide (AAm) were used as acrylic monomers, and methylene bisacrylamide (MBA) as the crosslinker. The experiments were performed at a constant temperature of 37 °C. It was found that hydrogel formation is faster in the presence of ultrasound than in its absence. In addition, FT-IR, UV-Vis, and SEM spectroscopy showed that the hydrogel synthesized ultrasonically has a higher swelling capacity and a more uniform and porous structure. It was also discovered that hydrogel formation speeds up at higher quantities of glycerol. However, an increase in crosslinker concentration proved ineffective, although it changed the appearance of the hydrogel. The method proposed in this research can be used in the synthesis of biomedical materials and in the development of drug delivery systems. Keywords: Polymerization, Hydrogels, Ultrasound, Microscopic Structure, Drugs Delivery *Corresponding author: pr_ebrahimi_r@yahoo.com Optimization of Biosurfactant Production for Cleaning of Floating Crude Oil H. Amani Faculty of Chemical Engenering, Babol Noshirvani University of Technology Abstract In this research, the ability of Pseudomonas aeruginosa NP2to produce rhamnolipid biosurfactant was investigated. Rhamnolipid has various applications in oil industry including cleaning oil sludge filters, cleaning oil storage tanks and biological treatment of oil wastes.The purpose of this paper was optimization of biosurfactant production for reduction of costs using taguchi experimental design methods. Source of carbon, salt concentration, phosphorus concentration and nitrogen concentration at three levels were investigated. The best condition for biosurfactant production was observed when sucrose was used as carbon source, 50 g/l Nacl as salt source, 6.75 g/l NaH2PO4 as phosphorus source, and 1g/l (NH4)2SO4 as nitrogen source. The highest rhamnoliopd production among different experiments was 2.8 g/l. Also the evaluation of emulsification index (E24) of the produced rhamnolipid was studied and the emulsification index value of 80% was reached for crude oil (API=34). Keywords: Biosurfactant, Taguchi, Rhamnolipid, Fermentation, Emulsion index *Corresponding author: hamani@nit.ac.ir Sediment as New Source of Clean Energy for Bioelectricity Production M. Rahimnejad*, Gh. Najafpour, Z. Najafgholi Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran Abstract Sediment microbial fuel cells (SMFCs) are new technologies for production of clean energy. SMFCs are able to convert a wide range of organic matter contained in the sediment to bioelectricity. In this study, four different ecosystems (sea, hatchery, river and spring) was evaluated to assess their potential to generate electricity. Graphites were used as anode and cathode electrode. The lowest produced voltage was around 310 mV and produced from hatchery. Compared to other ecosystems, rivers generate the highest maximum generated power density of 37.09 mw/m2. The maximum generated voltage was 740 mV and it was completely stable for 12 days. Keywords: Sediment microbial fuel cell Clean energy Electrical current Power density *Corresponding author: Rahimnejad@nit.ac.ir Comparision between CER.M-PAN and H.C.F.C-PAN in Separation Cesium Radioactive in Water Flow R. Saberi, A. Takhtardeshiri Institute of Nuclear Science and Technology, Tehran Abstract In the present Research, in order to access new technologies eliminate radioactive contamination have been carried out. The construction and use of exchange resins with high efficiency and efficacy, as a new approach in research and practical method of separation is introduced. This project is one of the most important pieces of 137Cs radioactive decontamina-tion nuclear fission, two new composite entitled as CER.M-PAN (cerium molybdate-poly acrylonitrile) and HCFC-PAN (Cu Hegzacyanoferrat II- poly acrylonitrile) was prepared and their performance was evaluated in terms of continuous and discontinuous. To identify the structure of the synthesized compound, infrared spectroscopy techniques were used. Surface Area and Porosity of adsorbent beads were assayed. In order to increase the efficiency of these two composites, combining them with the PAN and their stability in different environmental conditions assessed and evaluated. The results suggest that the same efficiency than HCFC-PAN composite composite is CER.M-PAN. Kayword: separation, H.C.F.C-PAN, 137Cs, Ion exchange, CER.M-PAN *Corresponding author: rsaberi@aeoi.org.ir Formic Acid Removal from Aqueous samples by Adsorption on Rice Bran N. Samadani Langrodi Department of Chemistry, Faculty of Science, Golestan University V. Jodaian Department of Chemistry, Islamshahr Branch, Islamic Azad University Abstract The aim of this study is to investigate the possibility of the using rice bran as a natural and suitable adsorbent for the removal of formic acid, which is an organic acid from liquid solution, allow the effect of various parameters such as adsorbent dose, initial concentration adsorbate, temperature and time on the adsorption process and finally the adsorption isotherm constants in determined. Removal of organic acids from liquid solutions is an important environmental challenge. Batch adsorption experiments showed that the adsorption increased with the increasing of the amount of adsorbent, initial concentration of adsorbate and decreasing temperature and adsorption process is reached the equilibrium state after one hour. The adsorption data were analyzed using the various isotherm models. From these various isotherm models, the adsorption process obeys the Langmuir and Freundlich adsorption isotherms. The results show a good agreement with both methods.The average amount of adsorbate per 3 degrees of freedom and confidence 95% ، 10.39±0.095 ، was obtained. Keywords: Organic acids, Adsorption isotherm, Adsorption, Rice bran *Corresponding author: nsamadani@yahoo.com Investigating the Variation of Activated Carbon Adsorbents’ Particle Size and Its Effect on Equilibrium Time and Nickel Ions’ Removal Efficiency from Aqueous Solutions F. TalebiKhalilmahaleh, R. Marandi Tehran Branch, Islamic Azad University Abstract The environmental pollution of harmful toxic metals is one of the important issues in the world today. Nickel is one of the toxic heavy metals which if enters into the human body in high concentrations, it will cause skin allergy, heart disease and various cancers. Therefore, this is apressing necessary to remove Nickel from industrial wastewater. The purpose of this study is firstly to remove nickel from aqueous solutions with synthesized activated carbon from carrot remains and secondly to investigate the effect of variations of the adsorbent particle sizes on the equilibrium time and the removal efficiency. To this end, adsorption of Ni (II) ions on the adsorbent was studied in a batch process. Firstly, the activated carbon was prepared from carrot remains with particle sizes between 37 and 300 micrometers. The results showed that the maximum absorption efficiency occurs (100%) at pH of 6. Moreover, it was shown that with decreasing the adsorbent size from 300 to 37 µm, the equilibrium time will decreases from 130 to 20 min. Experimental data was best fitted onto pseudo-second order model. Langmuir and Freundlich isotherms equation were used to fit the adsorption isotherms. It is evident from this study that activated carbon is a suitable material for the uptake of Ni (II) from aqueous solutions. Keywords:Activated Carbon, Nickel, particle size, Kinetic Models, Adsorption Isotherm *Corresponding author: Fatemeh.talebi89@yahoo.com Theoritical Study of the Catalytic and Inhibition Mechanism of the &beta-lactam Antibiotics by Metallo-&beta-lactamases in the Different Solvents and Different Temperatures Using Quantum Mechanical Calculations M. Ghiasi, B. Noohi Department of Chemistry, Faculty of Science, Alzahra University M. Zahedi Department of Chemistry, Faculty of Science, Shahid Beheshti University Abstract The most prevalent and important mechanism of bacterial resistance to &beta-lactam antibiotics, is the production of &beta-lactamase enzymes which inactivate these drugs by the hydrolytic cleavage of the four-membered &beta-lactam ring during two steps which is including the nucleophilic attack of the bridging hydroxide ion on the substrate and eventual protonation of the leaving amine group. During this reaction, metal ions play an important role in the catalytic process. Despite the availability of &beta-lactamase crystallographic structures, their mechanism of action is still unclear and no clinically useful inhibitors of these enzymes have been reported. Density functional theory (DFT) using B3LYP and 6-31G, 6-31G* and 6-311G** basis sets have been employed to calculate the details of electronic structure and electronic energy of catalytic reaction of CcrA enzyme active center from metallo-&beta-lactamase enzymes (M&betaLs), penicillin from &beta-lactam antibiotics, and the formed complexes including ES, ETS1, EI1, EI2, ETS2 and EP respectively, has been used. Also all the thermodynamic functions including ∆Hº, ∆Sº and ∆Gº to form two transition states, ETS1 and ETS2, and for the total reaction are evaluated at 25 °C, 31 °C, 37 °C and 40 °C and 1 atmosphere pressure. In all calculations solvent effects have been considered by using PCM method for water, ethanol, protein environment, nitro methane and carbon tetrachloride. Finally this reaction proceeds during an exothermic and spontaneous process, and the first step, the nucleophilic attack of the bridging hydroxide ion on the substrate, is the rate-limiting step. Keywords &beta-Lactam antibiotics, Metallo-&beta-lactamase enzymes (M&betaLs), CcrA enzyme, Penicillin, Thermodynamic functions, QM calculations. *Corresponding author: ghiasi@alzahra.ac.ir
Volume 16, Issue 42 (5-2015)
Abstract
Biostratigraphy of Eocene Sedimentary Rocks Based on Alveolina in East Lut Block, Iran Babazadeh S.A., *Soltani Najafabadi M. Department of Geology, Faculty of Sciences, Payamenoor University,Tehran Abstract The various species of Alveolina for biostratigraphy of Eocene sedimentary rocks are very important. In this research, the species of Alveolina are reported for the first time in three cross sections: Chalonak, Kalaterood and East Beinabad. These sections are attributes to Early- Middle Eocene age. The 55 samples collected from Chalonak section and the thickness is reached to 245 m. In this section, four biozones are distinguished. They are following: Alveolina globula-Alveolina solida interval range zone, Alveolina solida-A .globosa interval range zone, Alveolina globusa total range zone and Alveolina aragonesis total range zone. On the basis of index fossils such as Alveolinana avellana, A. aragonensis,A. globula, A. leupoldi, A. globusa, A. elliptica nutalli, A. rotundata, A. corbarica, A.solida, which are existing in these biozones, the age of this section is attributed to Early Eocene. Of course two species of Nummulites (Nummulites globulus, N. atacicus) and Cuvilierina valensis are determined in Chalonak section. The 80 samples are collected from Kalaterood section and the thickness is reached to 242 m. In this section, four biozones are distinguished. They are following: Alveolina solida- A. globosa interval range zone, Alveolina globosa total range zone, Alveolina aragonensis-A. canavarii interval range zone and A. canavarii total range zone. The several index fossils are found in this section following: Alveolina aragonensis, A. decipiens, A. Avellana, A. laxa, A. pasticillata, A. canavari, A . globosa and A. solida. The age of this section is Early Eocene. The 150 samples are collected from East Binabad section and the thickness is reached to 900 m. In this section, four biozones are presented. They are Glomalveolina lepidula – Alveolina solida interval rage zone. Alveolina elliptica nutali- Alveolina corbarica interval range zone, Alveolina corbarica total range zone and Alveolina ruetimeyeri-Alveolina levantina assemblage zone. There are several index fossils such as Alveolina corbarica, A. elliptica nuttalli, A.levantina, A. roetimeyeri and A. decipiens, Glomalveolina lepidula. The age of this section is early Eocene. Keywords: Biostratigraphy, Eocene, Lut,Foraminifera *Corresponding author: maryamsoltani26@yahoo.com Deformation Evidences and Shear Zone in Marziyan Granitic Pluton, Azna, Sanandaj-Sirjan Zone *Darvishi E., Khalili M., Nadimi A. Department of Geology, Faculty of Sciences, University of Isfahan Abstract Marziyan granitic pluton is one of the numerous intrusive bodies in Sanandaj-Sirjan structural zone. The pluton is composed of locogranite, granite and granodiorite and its contact metamorphic rocks are consisting of cordierite and andalusite schist. Tourmaline and garnet bearing locogranite, aplite, pegmatite, mylonite and injected migmatite are exposed in the metamorphic halo. The major minerals include quartz, plagioclase, K-feldspar, biotite as well as muscovite, tourmaline and garnet. Structural studies indicate the presence of shear zones, especially in the southeastern parts with NNW-SSE trend. Four types of microstructures are present in the region 1) magmatic microstructures, 2) high temperature solid state microstructure, 3) low temperature solid state microstructure and 4) sub-mylonitic and mylonitic microstructure. All rocks of the region have been subjected to shear deformation which led the formation of S-C foliations and other sense of shear markers. The presence of asymmetric porphyroclasts and porphyroblast, biotite and feldspar kink bands, mica-fish mica and andalusite and domino and boudinaged structures of feldspar and tourmaline are evidences of ductile deformation in a contractional and dextral shear regime. All evidences indicate that high temperature solid state zones in greenschist facies to lower amphibolite conditions (300-500°C) have formed simultaneously with emplacement of granitic bodies. Low temperature solid state, sub-mylonitic and mylonitic zones developed following the emplacement of granitic bodies. Kaywords: Granite, Marzyian, Deformation Evidence, Shear Zone, Sanandaj-Sirjan Zone *Corresponding author: geo.edarvishi@gmail.com Deformation Evidence for Regional, Contact and Dynamic Metamorphism in Aliabad Damagh Shear Zone (Hamadan) Masoudi F., *Naderi F. Faculty of Earth Sciences, Shahid Beheshti University Faculty of Earth Sciences, Kharazmi University Abstract Aliabad Damagh region in southern Hamadan, is located NW of Sanandaj Sirjan Zone. In this region, different metamorphic rocks with a variety of fabric elements are exposed. In this research, metamorphic rocks were investigated based on the microfabric and temperature. In the area deformation occurred along the temperature variations path. Three generations of foliation and four deformation phases are present in the region. Porphyroblasts growth in foliation and microfabric evidence reveal that deformation began during regional metamorphism, while mica and chlorite crystallized as post tectonic minerals compare to S3 during retrograde metamorphism. The highest grade of this metamorphism is green schist to amphibolite facies. Deformation elements in granite mylonite and metamorphic rocks in Aliabad Damagh region imply occurrence of regional metamorphism followed by a dynamic metamorphism which cause a widespread ductile shear zone. Deformation elements in carbonate mylonites, confirm the presence of a right lateral shear zone. Based on calcite twinning in mylonitize marbles the temperature of dynamic metamorphism is higher than 200 ˚C. Based on the effect of temperature on lithology, fabric and strain rate, the shear zone in Aliabad Damagh region is ductile to brittle. Keywords: Hamadan, Shear zone, Regional metamorphism, Dynamic metamorphism, Temperature of the deformation. *Corresponding author: fatima_ni@yahoo.com Spatial Variation of Fractal Parameters in Central Alborz, Iran Mirabedini M. S., *Agh-ataby M. Department of Geology, Faculty of Sciences, Golestan University Abstract Baladeh-Kojour earthquake of May 28th, 2004 is one of the largest earthquakes in vicinity of Tehran, occurred in the northern part of the Alborz range. In this research, spatial variation of fractal parameters has been studied to estimate the seismic pattern of the study area. In order to draw the spatial variation maps, b-value, correlation dimension of epicentral and temporal distribution of earthquakes, De and Dt have been calculated for the data sets of before and after the mainshock, separately. The results show that before the earthquake, these parameters have low values in the eastern side of the mainshock epicenter. It seems that these low values before the earthquake may arise due to clusters of events with larger magnitude and small events after it. Seismic rate has decreased in the surroundings of the mainshock (seismic quiescence). After the mainshock, the lowest values of b-value and Dt is seen in the epicentral and western part of the mainshock. These low values are due to aftershock clustering and stress release, took placed just after the mainshock and during the aftershock sequence. Intensity increasing is observed in the shake map of earthquake. The De parameter is low after the mainshock occurrence. Low b-value and high De indicate high level of seismic activity in the region. The obtained results show the fractal parameters sensitivity to spatial and temporal clustering of earthquakes. Therefore, these parameters can be used as an indicator for seismic precursory patterns of major earthquakes. Keywords: Fractal Parameters, Baladeh-Kojour, Cetral Alborz, Aftershock Cluster, Seismic Quiescence. *Corresponding author: maryamataby@yahoo.com Mica chemistry and metamorphism in garnet-micaschists of Haji-Qara high, North of Golpayegan *Mirlohi A., Khalili M., Tabatabaeimanesh S. M. Department of Geology, Faculty of Sciences, University of Isfahan Massonneh H. Institut Für Mineralogie und Kristallchemie, Universitat Stuttgart, Germany Abstract Garnet-micaschists from Haji Qara high, north of Golpayegan, are part of the metamorphic rocks of the Sanandaj-Sirjan Zone (SSZ). Lepidoporphyroblastic and porphyropoikiloblastic are the main textures and the mineral assemblages consist dominantly of Fe-biotite, muscovite and ferriphengite, metamorphic Fe-Mg chlorites (I-type and IIb), garnet and quartz. Staurolite, andalusite, plagioclase carbon, Fe-oxides and tourmaline are present as accessories. Petrographic evidences as well as mica chemistry along with other paragenesis and thermometric estimations indicate a path change from amphibolites facies to lower pressure and higher temperature gradient suggesting the presence of a local pluton which led to garnet porphyroblast, biotite and muscovite (overprinted in different orientation) and andalusite crystallization. The occurrence of chlorite, ferriphengite and Fe-oxides demonstrate a retrograde metamorphism during uplift and decompressional cooling path in the area. Keywords: Mica, Metamorphism, Metapelite, Golpayegan, Sanandaj-Sirjan Zone (SSZ) *Corresponding author: akrammirlohi@gmail.com Simulation of Nitrate Transport in Groundwater: Lenjanat Plain, Isfahan Naseri H.R. Department of Earth Sciences, Shahid Beheshti University *Keyhomayon Z. Department of Earth Sciences Payamnoor University, Nakhaee M. Faculty of Earth Sciences, Kharazmi University Abstract The present study aimed at identifying the nitrate transport in the groundwater of Lenjanat plain, Isfahan. Nitrate concentrations were measured seasonally and groundwater flow was modeled for nitrate transport simulation using MODFLOW and MT3DMS codes. The nitrate concentrations were compared with the human and livestock drinking water and irrigation water standards. The results show that nitrate concentrations are higher than the guidelines limits in groundwaters. The flow modeling reveals that the groundwater flow system of the study aquifer has been influenced by the aquifer hydrogeological characteristics. The falling watertable and reduce aquifer storage are due to the anthropogenic stresses on flow system. The transport model calibration and sensitivity analysis shows that nitrate leaching from agricultural land, first–order irreversible rate reaction, effective porosity and precipitation are the major factors affecting the entry and retention of nitrate in Lenjanat groundwater. Denitrification rate in the aquifer has been decreased due to high concentration of dissolved oxygen in groundwater and low extent of organic carbon. Half-life of nitrate in Lenjanat aquifer is more than 2.5 years. Nitrate transport in the aquifer is mainly by convection. Considering the calculated mass with transport model, the nitrogen leaching to groundwater of study area is 108 kg N ha-1 yr-1. Keywords: Groundwater flow modeling, Nitrate transport simulation, MT3DMS code, Lenjanat aquifer *Corresponding author: zkayhomayoon@pnu.ac.ir The rodingitization of gabbroic bodies in the southeast of Sahneh (west of Iran) with emphasis on mineral reaction and isotope geochemistry Noori F.Geology Department, Faculty of Basic Sciences , Tarbiate Modares University, Tehran, Iran *Azizi H. Mining Department,Faculty of Engineering , University of Kurdistan,Sanandaj , Iran Abstract Gabbroic bodies with NW-SE trend outcropped in the southwest of Sahneh in the north of Gamassiab River, W. Iran are part of Zagros ophiolite . This complex is separated from the other geological units by deep faults and cut by pyroxenitic dikes. The field evidences, petrographic, geochemical and mineral paragenesis of these rocks are completely different from the fresh and un-altered gabbroic rocks. Furthermore the high ratios of 143Nd/144Nd (0.512945-0.513021) and low ratios of 87Sr/86Sr (0.70334-0.70656) indicate the sub-oceanic depleted mantle source for the origin of these rocks. Low variation of 143Nd/144Nd ratios, increasing of 87Sr/86Sr ratios, decreasing of SiO2 and increasing of CaO and Al2O3 mainly concludes the high reaction of gabbroic rocks with seawater. The pargenetic assemblages of altered gabbros are grossular/hydrogrossular, anderadite, epidote, idocrase (vesuvianite) and diopside. The mineral paragenesis reveals that the rodingitization was occurred by reaction of gabbroic bodies with high alkali water at a shallow depth. Keywords: Zagros, Rodingite, Sr-Nd Isotopic ratios, Depleted mantle. *Corresponding author: Azizi1345@gmail.com