Search published articles


Showing 3 results for مدل سازی

Bahman Soleimani,
Volume 10, Issue 2 (2-2010)
Abstract

The Shadgan petroleum oil field located in Dezful Embayment is a symmetrical anticline with 23.5Km length and 6.5Km width in the Asmari top horizon. The field trend is similar the regional Zagros trend. Asmari reservoir consisted of two separated reservoirs. The aim of the present study is to construct stratigraphy and faults models, reservoir quality evaluation, fault impacts and oil volume determination using RMS software. To construct the structural model, faults and reservoir zones data will be applied to design reservoir geometry. Stratigraphic and fault models revealed that the faults passed through the reservoirs but have not affected on their relations. This fact is verified by different petroleum API in two reservoirs and their independent pressure variations as well during production period. With correlation of faults, porosity distribution and reservoir volume models, it was revealed the fault effects in the reservoir properties quality.
Faribourz Masoudi, Roghieh Doroozi,
Volume 13, Issue 4 (2-2014)
Abstract

In the northern hillside of Central Alborz, in south Marzanabad, there are outcrops of basic volcanic rocks which attributed to Cretaceous time .In this study, effective processes on evolution of these volcanic rocks are surveyed to add on our knowledge about Mesozoic magmatisim in Central Alborz. Based on petrographical and geochemical studies, south Marzanabad basic rocks could be classified into 2 groups of basalt and andesite basalt. Geochemical diagrams imply that the magma nature is alkaline and generated in intracontinetal extensional environment. Microscopic studies, mineral chemical composition and the observed trends in geochemical diagrams of whole rocks, all are inline with fractional crystallization as a main magmatic process. Fractionation began with crystallization of olivine and pyroxene and minor plagioclase in basalts and continued with crystallization of clinopyroxene and plagioclase in andesite basalt. In addition to petrographical, mineralogical and chemical evidences, the occurrence of fractional crystallization process is confirmed by the geochemical modeling with Melts software which also let us to reconstruct the condition of fractionation process. Based on the fractional crystallization modeling in south Marzanabad basic volcanic rocks, basalts are generated by 40 percent of fractional crystallization from primary magma. Basaltic andesites also produced after the fractionation of basalts, during 70 percent fractional crystallization from the same magma. Olivine thermobarometric studies also confirm the accuracy of data which is obtained by the Melts software.
Hamidreza Nassery, Zahra Kayhomayon, Mohammad Nakhaei,
Volume 16, Issue 42 (5-2015)
Abstract

The present study aimed at identifying the nitrate transport in the groundwater of Lenjanat plain, Isfahan. Nitrate concentrations were measured seasonally and groundwater flow was modeled for nitrate transport simulation using MODFLOW and MT3DMS codes. The nitrate concentrations were compared with the human and livestock drinking water and irrigation water standards. The results show that nitrate concentrations are higher than the guidelines limits in groundwaters. The flow modeling reveals that the groundwater flow system of the study aquifer has been influenced by the aquifer hydrogeological characteristics. The falling watertable and reduce aquifer storage are due to the anthropogenic stresses on flow system. The transport model calibration and sensitivity analysis shows that nitrate leaching from agricultural land, first–order irreversible rate reaction, effective porosity and precipitation are the major factors affecting the entry and retention of nitrate in Lenjanat groundwater. Denitrification rate in the aquifer has been decreased due to high concentration of dissolved oxygen in groundwater and low extent of organic carbon. Half-life of nitrate in Lenjanat aquifer is more than 2.5 years. Nitrate transport in the aquifer is mainly by convection. Considering the calculated mass with transport model, the nitrogen leaching to groundwater of study area is 108 kg N ha-1 yr-1.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Quarterly Journal of Science Kharazmi University

Designed & Developed by : Yektaweb