Showing 2 results for Block-Pulse Functions
Volume 9, Issue 1 (10-2010)
Abstract
A direct method to determine numerical solutions of linear Volterra integro-differential equations is presented in this paper.. This method is based on block-pulse functions and its operational matrix. By using this approach, the integro-differential equation reduces to a linear lower triangular system of algebraic equations which can be solved easily. Some numerical examples are provided to illustrate accuracy and computational efficiency of the method. MSC: 45J05 41A30
Volume 18, Issue 44 (10-2009)
Abstract
Hybrid of rationalized Haar functions are developed to approximate the solution of the differential equations. The properties of hybrid functions which are the combinations of block-pulse functions and rationalized Haar functions are first presented. These properties together with the Newton-Cotes nodes are then utilized to reduce the differential equations to the solution of algebraic equations. The method is computationally attractive, and applications are demonstrated through illustrative examples.