Search published articles


Showing 3 results for Fredholm


Volume 9, Issue 1 (10-2010)
Abstract

This paper presents an appropriate numerical method to solve nonlinear Fredholm integro-differential equations with time delay. Its approach is based on the Taylor expansion. This method converts the integro-differential equation and the given conditions into the matrix equation which corresponds to a system of nonlinear algebraic equations with unknown Taylor expansion coefficients, so that the solution of this system yields the Taylor expansion coefficients of the solution function. Then, the performance of the method is evaluated with some examples
S Davaeefar, Yadollah Ordokhani,
Volume 13, Issue 2 (7-2013)
Abstract

In this article‎, ‎the efficient numerical methods for finding solution of the linear and nonlinear Fredholm integral equations of the second kind on base of Bernstein multi scaling functions are being presented‎. ‎In the beginning the properties of these functions‎, ‎which are a combination of block-pulse functions on ‎, ‎and Bernstein polynomials with the dual operational matrix are presented‎. ‎Then these properties are used for the purpose of conversion of the mentioned integral equation to a matrix equation that are compatible to a algebraic equations system‎. ‎The imperative of the Bernstein multi scaling functions are‎, ‎for the proper quantitative value of and have a high accuracy and specifically the relative errors of the numerical solutions will be minimum‎. ‎The presented methods from the standpoint of computation are very simple and attractive and the numerical examples which were presented at the end shows the efficiency and accuracy of these methods‎.
Yadollah Ordokhani, Haneh Dehestani,
Volume 13, Issue 2 (7-2013)
Abstract

In this paper, a collocation method based on the Bessel polynomials is used for the solution of nonlinear Fredholm-Volterra-Hammerstein integro-differential equations (FVHIDEs) under mixed condition. This method of estimating the solution, transforms the nonlinear (FVHIDEs) to matrix equations with the help of Bessel polynomials of the first kind and collocation points. The matrix equations correspond to a system of nonlinear algebraic equations with the unknown Bessel coefficients. Present results and comparisons demonstrate that our estimate has good degree of accuracy and this method is more valid and useful than other methods.In this paper, a collocation method based on the Bessel polynomials is used for the solution of nonlinear Fredholm-Volterra-Hammerstein integro-differential equations (FVHIDEs) under mixed condition. This method of estimating the solution, transforms the nonlinear (FVHIDEs) to matrix equations with the help of Bessel polynomials of the first kind and collocation points. The matrix equations correspond to a system of nonlinear algebraic equations with the unknown Bessel coefficients. Present results and comparisons demonstrate that our estimate has good degree of accuracy and this method is more valid and useful than other methods.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Quarterly Journal of Science Kharazmi University

Designed & Developed by : Yektaweb