Search published articles


Showing 2 results for Shear Zone

Esmaiel Darvishi, Mahmood Khalili, Alireza Nadimi,
Volume 16, Issue 42 (5-2015)
Abstract

Marziyan granitic pluton is one of the numerous intrusive bodies in Sanandaj-Sirjan structural zone. The pluton is composed of locogranite, granite and granodiorite and its contact metamorphic rocks are consisting of cordierite and andalusite schist. Tourmaline and garnet bearing locogranite, aplite, pegmatite, mylonite and injected migmatite are exposed in the metamorphic halo. The major minerals include quartz, plagioclase, K-feldspar, biotite as well as muscovite, tourmaline and garnet. Structural studies indicate the presence of shear zones, especially in the southeastern parts with NNW-SSE trend. Four types of microstructures are present in the region 1) magmatic microstructures, 2) high temperature solid state microstructure, 3) low temperature solid state microstructure and 4) sub-mylonitic and mylonitic microstructure. All rocks of the region have been subjected to shear deformation which led the formation of S-C foliations and other sense of shear markers. The presence of asymmetric porphyroclasts and porphyroblast, biotite and feldspar kink bands, mica-fish mica and andalusite and domino and boudinaged structures of feldspar and tourmaline are evidences of ductile deformation in a contractional and dextral shear regime. All evidences indicate that high temperature solid state zones in greenschist facies to lower amphibolite conditions (300-500°C) have formed simultaneously with emplacement of granitic bodies. Low temperature solid state, sub-mylonitic and mylonitic zones developed following the emplacement of granitic bodies.
F Masoodi, F Naderi,
Volume 16, Issue 42 (5-2015)
Abstract

Aliabad Damagh region in southern Hamadan, is located NW of Sanandaj Sirjan Zone. In this region, different metamorphic rocks with a variety of fabric elements are exposed. In this research, metamorphic rocks were investigated based on the microfabric and temperature. In the area deformation occurred along the temperature variations path. Three generations of foliation and four deformation phases are present in the region. Porphyroblasts growth in foliation and microfabric evidence reveal that deformation began during regional metamorphism, while mica and chlorite crystallized as post tectonic minerals compare to S3 during retrograde metamorphism. The highest grade of this metamorphism is green schist to amphibolite facies.
Deformation elements in granite mylonite and metamorphic rocks in Aliabad Damagh region imply occurrence of regional metamorphism followed by a dynamic metamorphism which cause a widespread ductile shear zone. Deformation elements in carbonate mylonites, confirm the presence of a right lateral shear zone. Based on calcite twinning in mylonitize marbles the temperature of dynamic metamorphism is higher than 200 ˚C. Based on the effect of temperature on lithology, fabric and strain rate, the shear zone in Aliabad Damagh region is ductile to brittle.  

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Quarterly Journal of Science Kharazmi University

Designed & Developed by : Yektaweb