Search published articles


Showing 4 results for Volterra


Volume 9, Issue 1 (10-2010)
Abstract

A direct method to determine numerical solutions of linear Volterra integro-differential equations is presented in this paper.. This method is based on block-pulse functions and its operational matrix. By using this approach, the integro-differential equation reduces to a linear lower triangular system of algebraic equations which can be solved easily. Some numerical examples are provided to illustrate accuracy and computational efficiency of the method. MSC: 45J05 41A30
Esmaeil Babolian, Ar Vahidi,
Volume 11, Issue 2 (2-2011)
Abstract

In this paper, we conduct a comparative study between the homotopy perturbation method (HPM) and Adomian’s decomposition method (ADM) for analytic treatment of nonlinear Volterra integral equations, and we show that the HPM with a specific convex homotopy is equivalent to the ADM for these type of equations.


Yadollah Ordokhani, Haneh Dehestani,
Volume 13, Issue 2 (7-2013)
Abstract

In this paper, a collocation method based on the Bessel polynomials is used for the solution of nonlinear Fredholm-Volterra-Hammerstein integro-differential equations (FVHIDEs) under mixed condition. This method of estimating the solution, transforms the nonlinear (FVHIDEs) to matrix equations with the help of Bessel polynomials of the first kind and collocation points. The matrix equations correspond to a system of nonlinear algebraic equations with the unknown Bessel coefficients. Present results and comparisons demonstrate that our estimate has good degree of accuracy and this method is more valid and useful than other methods.In this paper, a collocation method based on the Bessel polynomials is used for the solution of nonlinear Fredholm-Volterra-Hammerstein integro-differential equations (FVHIDEs) under mixed condition. This method of estimating the solution, transforms the nonlinear (FVHIDEs) to matrix equations with the help of Bessel polynomials of the first kind and collocation points. The matrix equations correspond to a system of nonlinear algebraic equations with the unknown Bessel coefficients. Present results and comparisons demonstrate that our estimate has good degree of accuracy and this method is more valid and useful than other methods.
Yadollah Ordokhani, Neda Rahimi,
Volume 14, Issue 3 (10-2014)
Abstract

In this paper rationalized Haar (RH) functions method is applied to approximate the numerical solution of the fractional Volterra integro-differential equations (FVIDEs). The fractional derivatives are described in Caputo sense. The properties of RH functions are presented, and the operational matrix of the fractional integration together with the product operational matrix are used to reduce the computation of FVIDEs into a system of algebraic equations. By using this technique for solving FVIDEs time and computational are small. Numerical examples are given to demonstrate application of the presented method with RH functions base.In this paper rationalized Haar (RH) functions method is applied to approximate the numerical solution of the fractional Volterra integro-differential equations (FVIDEs). The fractional derivatives are described in Caputo sense. The properties of RH functions are presented, and the operational matrix of the fractional integration together with the product operational matrix are used to reduce the computation of FVIDEs into a system of algebraic equations. By using this technique for solving FVIDEs time and computational are small. Numerical examples are given to demonstrate application of the presented method with RH functions base.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Quarterly Journal of Science Kharazmi University

Designed & Developed by : Yektaweb