Search published articles


Showing 2 results for Active Continental Margin


Volume 8, Issue 3 (2-2009)
Abstract

Malayer granitoid rocks, as a part of Sanandaj-Sirjan plutonism, are located at latitude 34°00´-34°18´ and longitude 48°30´-48°52´. Tectono-‌‌magmatic investigation on the history of Sanandaj-Sirjan Zone attributed the formation of these plutonic rocks to convergence of Iranian and Arabian plates in conjunction with subduction of Neo-Tethys in the western part of Sanandaj-Sirjan Zone. Geochemical studies of Major and Trace elements on Malayer granitic rocks reveal that these granitic plutons are formed in a compressive environment, such as active continental margin in the convergent zone of oceanic crust and continental plate at the magmatic arc of continental margin. High ratio of LILEs/HFSEs and negative anomaly of Sr, Nb, Ba and Ta confirm the relation of these granitoids to subduction zone. These, also point out the role of shallow continental crust in formation and evolution of granitoidic magma. Broad range of mineral composition in petrographical observations and large variations in field studies, high-K calc-alkaline affinity and assessment of trends observed in AFM, K2O-SiO2, FeO-MgO diagrams versus those of plutons of known tectonic setting accentuate the similarities between Malayer granitic rocks and Andian type Magmatic Arc of Active Continental Margins and as a result highlights the role of upper mantle mafic magmas and tectonic movement in formation of their parental magma.
, , Mohammad Mohajjel,
Volume 12, Issue 2 (11-2012)
Abstract

The Alut granitoid complex is located in the northwestern part of the Sanandaj–Sirjan zone. This complex comprises three main units i.e. monzogranite to granodiorite bodies (SiO2 = 65–77 wt %) which is widespread throughout the area, a quartz-diorite to tonalite unit (SiO2 = 52–63 wt %) exposed as two stocks and mylonitic granitoid scattered as separate outcrops through the area. NE-SW trending microquartz-diorite and NW-SE trending aplite dykes are also present in this complex. The quartz-diorite to tonalite unit has relatively high CaO,FeO, MgO, Al2O3 and low Rb/Sr, Sr/Y, and (La/Yb)N, which preclude an origin of variably fractionated mantle melts and favour a mafic lower crustal source. Dehydration melting of biotite-bearing metasedimentary sources at relatively low pressures is proposed for the origin of monzogranite to granodiorite unit. Geochemically this complex is metaluminous to slightly peraluminous, typical of I-type granites. It belongs to low K (and high K for some monzogranite samples) calc-alkaline series and displays the geochemical characteristics typical of volcanic arc plutons related to an active continental margin area (e.g. significant Nb, Ti, P and Sr depletion). Based on collected geochemical data, the Alut granitoids originated by partial melting of crustal protoliths having different compositions in a deformed active margin.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Quarterly Journal of Science Kharazmi University

Designed & Developed by : Yektaweb