Volume 23, Issue 29 (7-2025)                   RSMT 2025, 23(29): 56-71 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafarnezhadgero A, Madahi A, Piran Hamlabadi M. A Comparison Of Forces Excreted On The Foot While Running On The Ground And Artificial Turf In People With Pronated And Supinated Feet. RSMT 2025; 23 (29) :56-71
URL: http://jsmt.khu.ac.ir/article-1-555-en.html
Associate Professor of Sports Biomechanics, Department of Sport Biomechanics, Faculty of Educational Sciences and Psychology, Mohaghegh Ardabili University, Ardabil, Iran. , amiralijafarnezhad@gmail.com
Abstract:   (4482 Views)
Background and Aims: The surface quality and type are an important factor that may influence the risk of sustaining injuries during running. The aim of the present study was to compare forces excreted on the foot while running on the ground and artificial turf in people with pronated and supinated feet.
Materials and Methods: The statistical population of the present study consisted of healthy men with pronated and supinated feet in Ardabil province. A statistical sample of 30 people aged 20-25 years was selected by available sampling and participated in the present study. Statistical samples were divided into three groups. There were 10 patients in the pronated foot group, 10 people in the supinated foot group and the third group of 10 people as the control group. The navicular drop test was used to measure foot type. A Bertec force plate was used to record ground reaction forces while running on ground and artificial turf at constant speed (about 3.2 m/s). The ground reaction forces in the vertical (Fz), anterior-posterior (Fy) and medio-lateral (Fx) directions were recorded during running.
Results: The results revealed greater medio-lateral ground reaction force at the heel contact in males with pronated feet while running on the ground than that artificial grass. In addition, the time to reach the peak of the vertical component at heel contact during running on grass was greater compared to the ground.
Conclusion: The results showed that the use of artificial turf can improve the risk factors for injury in people with pronated and supinated feet.

 
Full-Text [PDF 1875 kb]   (71 Downloads)    
Type of Study: Research | Subject: sport biomechanic
Received: 2024/05/21 | Accepted: 2025/01/23 | Published: 2025/07/1

References
1. Khademi-Kalantari K, Rahimi F, Hosseini SM, Baghban AA, Jaberzadeh S. Lower limb muscular activity during walking at different speeds: Over-ground versus treadmill walking: A voluntary response evaluation. Journal of bodywork and movement therapies. 2017;21(3):605-11. doi:10.1016/j.jbmt.2016.09.009 [DOI:10.1016/j.jbmt.2016.09.009]
2. Duvall J. Enhancing the benefits of outdoor walking with cognitive engagement strategies. Journal of environmental psychology. 2011;31(1):27-35. doi:10.1016/j.jenvp.2010.09.003 [DOI:10.1016/j.jenvp.2010.09.003]
3. Van Mechelen W. Running injuries. Sports medicine. 1992;14(5):320-35. doi:10.2165/00007256-199214050-00004 [DOI:10.2165/00007256-199214050-00004]
4. Jafarnezhadgero A, Piran Hamlabadi M, Naderpour M, Khodabakhsh Dizaj M. Effect of Sport Shoe Weight on Gait Kinetics in Athletes With Anterior Cruciate Ligament Reconstruction During Walking. The Scientific Journal of Rehabilitation Medicine. 2023;11(6):850-63. doi.10.32598/SJRM.11.6.1 [DOI:10.32598/SJRM.11.6.1]
5. Jafarnezhadgero A, Givi AM, Hamlabadi MP, Sajedi H, Zago M. Muscle activation while running on the ground compared to artificial turf in males with pronated and supinated feet. Gait & Posture. 2024;107:306-11. doi.10.1016/j.gaitpost.2023.10.020 [DOI:10.1016/j.gaitpost.2023.10.020]
6. Fong DT, Lam M-H, Lao ML, Chan CW, Yung PS, Fung K-Y, et al. Effect of medial arch-heel support in inserts on reducing ankle eversion: a biomechanics study. Journal of Orthopaedic Surgery and Research. 2008;3(1):1-7. doi:10.1186/1749-799x-3-7 [DOI:10.1186/1749-799X-3-7]
7. Murley GS, Bird AR. The effect of three levels of foot orthotic wedging on the surface electromyographic activity of selected lower limb muscles during gait. Clinical Biomechanics. 2006;21(10):1074-80. doi:10.1016/j.clinbiomech.2006.06.007 [DOI:10.1016/j.clinbiomech.2006.06.007]
8. Emami S, Jafarnezhadgero A, Hamlabadi MP. The Effect of Knee Orthosis on Co-contraction Values of Knee and Ankle Muscles During Running in People with Knee Deformity in the Frontal Plane. Iranian Journal of Rehabilitation Research. 2022;8(4):76-87. doi.10.22034/IJRN.8.4.76
9. Jafarnezhadgero AA, Hamlabadi MP, Anvari M, Zago M. Long-term effects of shoe mileage on knee and ankle joints muscle co-contraction during walking in females with genu varus. Gait & Posture. 2021;89:74-9. doi.10.1016/j.gaitpost.2021.07.004 [DOI:10.1016/j.gaitpost.2021.07.004]
10. Lovell WW, Winter RB, Morrissy RT, Weinstein SL. Lovell and Winter's pediatric orthopaedics: Lippincott Williams & Wilkins; 2006.
11. 11. Van Boerum DH, Sangeorzan BJ. Biomechanics and pathophysiology of flat foot. Foot and ankle clinics. 2003;8(3):419-30. doi:10.1016/s1083-7515(03)00084-6 [DOI:10.1016/S1083-7515(03)00084-6]
12. Parker N, Greenhalgh A, Chockalingam N, Dangerfield P. Positional relationship between leg rotation and lumbar spine during quiet standing. Research into Spinal Deformities 6: IOS Press; 2008. p. 231-9. doi. 10.3233/978-1-58603-888-5-231 [DOI:10.3233/978-1-58603-888-5-231]
13. Lee MS, Vanore JV, Thomas JL, Catanzariti AR, Kogler G, Kravitz SR, et al. Diagnosis and treatment of adult flatfoot. The Journal of Foot and Ankle Surgery. 2005;44(2):78-113. doi.10.1053/j.jfas.2004.12.001 [DOI:10.1053/j.jfas.2004.12.001]
14. Franco AH. Pes cavus and pes planus: analyses and treatment. Physical therapy. 1987;67(5):688-94. doi:10.1093/ptj/67.5.688 [DOI:10.1093/ptj/67.5.688]
15. Cote KP, Brunet ME, II BMG, Shultz SJ. Effects of pronated and supinated foot postures on static and dynamic postural stability. Journal of athletic training. 2005;40(1):41.
16. Hong Y, Wang L, Li JX, Zhou JH. Comparison of plantar loads during treadmill and overground running. Journal of Science and Medicine in Sport. 2012;15(6):554-60. doi:10.1016/j.jsams.2012.01.004 [DOI:10.1016/j.jsams.2012.01.004]
17. Lorini G, Bossi D, Specchia N. The concept of movement prior to Giovanni Alfonso Borelli. Cappozo A. 1992. doi.10.2165/00007256-199418020-00005
18. Ford KR, Manson NA, Evans BJ, Myer GD, Gwin RC, Heidt Jr RS, et al. Comparison of in-shoe foot loading patterns on natural grass and synthetic turf. Journal of Science and Medicine in Sport. 2006;9(6):433-40. doi:10.1016/j.jsams.2006.03.019 [DOI:10.1016/j.jsams.2006.03.019]
19. Dixon S, Stiles V. Impact absorption of tennis shoe-surface combinations. Sports Engineering. 2003;6(1):1-9. doi:10.1007/bf02844155 [DOI:10.1007/BF02844155]
20. Tillman M, Fiolkowski P, Bauer J, Reisinger K. In‐shoe plantar measurements during running on different surfaces: Changes in temporal and kinetic parameters. Sports Engineering. 2002;5(3):121-8. doi:10.1046/j.1460-2687.2002.00101.x [DOI:10.1046/j.1460-2687.2002.00101.x]
21. Pine D. Artificial vs natural turf: injury perceptions fan the debate. The Physician and Sportsmedicine. 1991;19(8):125-8. doi:10.1080/00913847.1991.11702235 [DOI:10.1080/00913847.1991.11702235]
22. Andréasson G, Peterson L. Effects of shoe and surface characteristics on lower limb injuries in sports. Journal of Applied Biomechanics. 1986;2(3):202-9. doi:10.1123/ijsb.2.3.202 [DOI:10.1123/ijsb.2.3.202]
23. Torg JS, Quedenfeld TC, Landau S. The shoe-surface interface and its relationship to football knee injuries. The Journal of sports medicine. 1974;2(5):261-9. doi:10.1177/036354657400200502 [DOI:10.1177/036354657400200502]
24. Zarei M, Rahmani N. Comparison of Risk of Injury on Artificial Turf and Grass among Young Football Players. Journal of Research in Rehabilitation Sciences. 2017;12(6):324-31. doi. 10.22122/JRRS.V12I6.2814
25. Kiefer AW, Kushner AM, Groene J, Williams C, Riley MA, Myer GD. A commentary on real-time biofeedback to augment neuromuscular training for ACL injury prevention in adolescent athletes. Journal of sports science & medicine. 2015;14(1):1.
26. Didia BC, Omu ET, Obuoforibo AA. The use of footprint contact index II for classification of flat feet in a Nigerian population. Foot & ankle. 1987;7(5):285-9. doi:10.1177/107110078700700504 [DOI:10.1177/107110078700700504]
27. Nejati P, Forugh B, Kuhpayezade J, Moeineddin R, Nejati M. Effects of foot orthoses on knee pain and function of female athletes with patellofemoral pain syndrome. ZUMS Journal. 2009;17(66):49-60.
28. Jafarnezhadgero AA, Hamlabadi MP, Sajedi H, Granacher U. Recreational runners who recovered from COVID-19 show different running kinetics and muscle activities compared with healthy controls. Gait & Posture. 2022;91:260-5. doi.10.1016/j.gaitpost.2021.11.002 [DOI:10.1016/j.gaitpost.2021.11.002]
29. Latour E, Latour M, Arlet J, Adach Z, Bohatyrewicz A. Gait functional assessment: Spatio-temporal analysis and classification of barefoot plantar pressure in a group of 11-12-year-old children. Gait & posture. 2011;34(3):415-20. doi.10.1016/j.gaitpost.2011.06.013 [DOI:10.1016/j.gaitpost.2011.06.013]
30. Piran Hamlabadi M, Jafarnezhadgero AA. Effect of Simple and Sensori Thoracolumbosacral Braces on Gait Kinetics in Low Back Pain Patients. Journal of Gorgan University of Medical Sciences. 2022;24(1):53-9.
31. 31. Hamlabadi MP, Jafarnezhadgero AA. Effects of Two Types of Simple and Sensor Thoracolumbosacral Braces on Ground Reaction Force Components during Walking in Males with Kyphosis. Journal of Gorgan University of Medical Sciences. 2022;24(3):59-64.
32. Chin WW. Commentary: Issues and opinion on structural equation modeling. JSTOR; 1998.
33. Farahpour N, Jafarnezhadgero A, Allard P, Majlesi M. Muscle activity and kinetics of lower limbs during walking in pronated feet individuals with and without low back pain. Journal of Electromyography and Kinesiology. 2018;39:35-41. doi:10.1016/j.jelekin.2018.01.006 [DOI:10.1016/j.jelekin.2018.01.006]
34. Mantashloo Z, Sadeghi H, Khaleghitazji M. Comparison of Ground Reaction Forces and Muscles Electrical Activity of the Ankle during Running in Young Men with Pronation and Normal Foot. Journal of Rafsanjan University of Medical Sciences. 2017;16(4):353-64. doi. 20.1001.1.17353165.1396.16.4.6.4
35. Mohamadpanah M, Hoseininejad SE, Salari Esker F. Effect of Surface Type on Impact Force, Loading Rate, and Free Moment during Stance Phase of Running. The Scientific Journal of Rehabilitation Medicine. 2021;10(2):234-45. doi.10.22037/jrm.2020.113485.2377
36. Hallemans A, Ortibus E, Truijen S, Meire F. Development of independent locomotion in children with a severe visual impairment. Research in developmental disabilities. 2011;32(6):2069-74. doi:10.1016/j.ridd.2011.08.017 [DOI:10.1016/j.ridd.2011.08.017]
37. Patla AE, Davies TC, Niechwiej E. Obstacle avoidance during locomotion using haptic information in normally sighted humans. Experimental brain research. 2004;155(2):173-85. doi:10.1007/s00221-003-1714-z [DOI:10.1007/s00221-003-1714-z]
38. Novacheck TF. The biomechanics of running. Gait & posture. 1998;7(1):77-95. doi:10.1016/s0966-6362(97)00038-6 [DOI:10.1016/S0966-6362(97)00038-6]
39. Kulin RM, Jiang F, Vecchio KS. Effects of age and loading rate on equine cortical bone failure. Journal of the Mechanical Behavior of Biomedical Materials. 2011;4(1):57-75. doi:10.1016/j.jmbbm.2010.09.006 [DOI:10.1016/j.jmbbm.2010.09.006]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by: Yektaweb