Volume 21, Issue 26 (12-2023)                   RSMT 2023, 21(26): 18-29 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

talebi-garakani E, kheradmand S, nasiri K. The Effect Of High Intensity Aerobic Training On Mitochondrial DNA Copy Number In Visceral Adipose Tissue Of Ovariectomized Rats Fed With High-Fat Diet. RSMT 2023; 21 (26) :18-29
URL: http://jsmt.khu.ac.ir/article-1-587-en.html
University of Mazandaran , UMZ.kheradmand@gmail.com
Abstract:   (2527 Views)
The prevalence of obesity in postmenopausal women is higher compared to men. A decrease in estrogen with menopause leads to dysfunction in mitochondria. The purpose of this study is to investigate the effect of high intensity aerobic training(HIT) on the copy number of mitochondrial genome (mtDNAcn) and mitochondrial transcription factor A(Tfam) in visceral adipose tissue(VAT) in ovariectomized(OVX) rats fed with high-fat diet(HFD). 40 rats (8 weeks, 200±20 gr) were divided into 5 groups:1) normal diet (ND), 2) ND+OVX, 3) HFD, 4) HFD+OVX, and 5) HFD+OVX+HIT. HIT performed aerobic training (80-85% of maximum oxygen consumption) for 8 weeks/5 sessions/42 minutes.48 hours after the last training session, VAT samples were taken to evaluate mtDNAcn and Tfam gene expression by qRT-PCR method. ANOVA and LSD tests were used to compare the differences between groups. OVX and HFD didn’t lead to a significant change in Tfam gene expression, but caused a significant decrease in the mtDNAcn compared to the control group. HIT caused a significant increase in Tfam gene expression compared to the control group and Tfam gene expression and mtDNAcn compared to the HFD+OVX. Hence, HIT improves mitochondrial function through mtDNAcn and Tfam gene expression in VAT in OVX rats fed by HFD.

 
Full-Text [PDF 2102 kb]   (449 Downloads)    
Type of Study: Research | Subject: sport physiology
Received: 2023/06/6 | Accepted: 2023/08/23 | Published: 2023/12/31

References
1. Landgren B-M, Collins A, Csemiczky G, Burger HG, Baksheev L, Robertson DM. Menopause transition: annual changes in serum hormonal patterns over the menstrual cycle in women during a nine-year period prior to menopause. The Journal of Clinical Endocrinology & Metabolism. 2004;89(6):2763-9. [DOI:10.1210/jc.2003-030824]
2. Boldarine VT, Pedroso AP, Brandão-Teles C, LoTurco EG, Nascimento CM, Oyama LM, et al. Ovariectomy modifies lipid metabolism of retroperitoneal white fat in rats: a proteomic approach. American Journal of Physiology-Endocrinology and Metabolism. 2020;319(2):E427-E37. [DOI:10.1152/ajpendo.00094.2020]
3. Lizcano F, Guzmán G. Estrogen deficiency and the origin of obesity during menopause. BioMed research international. 2014;2014. [DOI:10.1155/2014/757461]
4. Barbosa M, Shiguemoto G, Tomaz L, Ferreira F, Rodrigues M, Domingues M, et al. Resistance training and ovariectomy: Antagonic effects in mitochondrial biogenesis markers in rat skeletal muscle. International Journal of Sports Medicine. 2016;37(11):841-8. [DOI:10.1055/s-0042-107247]
5. Davis SR, Castelo-Branco C, Chedraui P, Lumsden M, Nappi R, Shah D, et al. Understanding weight gain at menopause. Climacteric. 2012;15(5):419-29. [DOI:10.3109/13697137.2012.707385]
6. Lovejoy J, Champagne C, De Jonge L, Xie H, Smith S. Increased visceral fat and decreased energy expenditure during the menopausal transition. International journal of obesity. 2008;32(6):949-58. [DOI:10.1038/ijo.2008.25]
7. Li X, Fan L, Zhu M, Jiang H, Bai W, Kang J. Combined intervention of 17β-estradiol and treadmill training ameliorates energy metabolism in skeletal muscle of female ovariectomized mice. Climacteric. 2020;23(2):192-200. [DOI:10.1080/13697137.2019.1660639]
8. Dubnov-Raz G, Pines A, Berry E. Diet and lifestyle in managing postmenopausal obesity. Climacteric. 2007;10(sup2):38-41. [DOI:10.1080/13697130701586428]
9. Lim S, Kim SK, Park KS, Kim SY, Cho BY, Yim MJ, et al. Effect of exercise on the mitochondrial DNA content of peripheral blood in healthy women. European journal of applied physiology. 2000;82:407-12. [DOI:10.1007/s004210000238]
10. Bengtsson J, Gustafsson T, Widegren U, Jansson E, Sundberg C. Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. Pflügers Archiv. 2001;443:61-6. [DOI:10.1007/s004240100628]
11. Kaaman M, Sparks L, Van Harmelen V, Smith S, Sjölin E, Dahlman I, et al. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia. 2007;50:2526-33. [DOI:10.1007/s00125-007-0818-6]
12. Sharafi Dehrhm F, Soori R, Abbasian S, Rastegar MM M. The effect of high-intensity exercise training on serum levels and gene expression of Tfam and PGC1α in hippocampus of male rats. Sport Physiology & Management Investigations. 2019;11(2):75-85.
13. Harvey N, Voisin S, Lea R, Yan X, Benton M, Papadimitriou I, et al. Investigating the influence of mtDNA and nuclear encoded mitochondrial variants on high intensity interval training outcomes. Scientific Reports. 2020;10(1):1-11. [DOI:10.1038/s41598-020-67870-1]
14. Cao X, Zhao Z-W, Zhou H-Y, Chen G-Q, Yang H-J. Effects of exercise intensity on copy number and mutations of mitochondrial DNA in gastrocnemus muscles in mice. Molecular medicine reports. 2012;6(2):426-8. [DOI:10.3892/mmr.2012.913]
15. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, et al. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients. 2020;12(4):925. [DOI:10.3390/nu12040925]
16. Khakpay R, Ansari S, Khakpai F. The antinociceptive effect of 17β-estradiol in the paragigantocellularis lateralis nucleus of ovariectomized female rats mediated by estrogen Receptors. Arak Medical University Journal (AMUJ). 2017;20(125):29-38. [DOI:10.15412/J.BCN.03080107]
17. Quiros PM, Goyal A, Jha P, Auwerx J. Analysis of mtDNA/nDNA ratio in mice. Current protocols in mouse biology. 2017;7(1):47-54. [DOI:10.1002/cpmo.21]
18. Amengual-Cladera E, Lladó I, Gianotti M, Proenza AM. Retroperitoneal white adipose tissue mitochondrial function and adiponectin expression in response to ovariectomy and 17β-estradiol replacement. Steroids. 2012;77(6):659-65. [DOI:10.1016/j.steroids.2012.02.012]
19. Cao JJ, Gregoire BR. A high-fat diet increases body weight and circulating estradiol concentrations but does not improve bone structural properties in ovariectomized mice. Nutrition research. 2016;36(4):320-7. [DOI:10.1016/j.nutres.2015.12.008]
20. Chen Y, Heiman ML. Increased weight gain after ovariectomy is not a consequence of leptin resistance. American Journal of Physiology-Endocrinology And Metabolism. 2001;280(2):E315-E22. [DOI:10.1152/ajpendo.2001.280.2.E315]
21. Ley CJ, Lees B, Stevenson JC. Sex-and menopause-associated changes in body-fat distribution. The American journal of clinical nutrition. 1992;55(5):950-4. [DOI:10.1093/ajcn/55.5.950]
22. Campbell S, Febbraio M. Effect of ovarian hormones on mitochondrial enzyme activity in the fat oxidation pathway of skeletal muscle. American Journal of Physiology-Endocrinology And Metabolism. 2001;281(4):E803-E8. [DOI:10.1152/ajpendo.2001.281.4.E803]
23. Morra EA, Rodrigues PL, de Jesus ICG, Lima PRDV, Ávila RA, Zanardo TÉC, et al. Endurance training restores spatially distinct cardiac mitochondrial function and myocardial contractility in ovariectomized rats. Free Radical Biology and Medicine. 2019;130:174-88. [DOI:10.1016/j.freeradbiomed.2018.10.406]
24. Nadal-Casellas A, Proenza AM, Lladó I, Gianotti M. Effects of ovariectomy and 17-β estradiol replacement on rat brown adipose tissue mitochondrial function. Steroids. 2011;76(10-11):1051-6. [DOI:10.1016/j.steroids.2011.04.009]
25. Gupte AA, Pownall HJ, Hamilton DJ. Estrogen: an emerging regulator of insulin action and mitochondrial function. Journal of diabetes research. 2015;2015. [DOI:10.1155/2015/916585]
26. Yaşar P, Ayaz G, User SD, Güpür G, Muyan M. Molecular mechanism of estrogen-estrogen receptor signaling. Reproductive medicine and biology. 2017;16(1):4-20. [DOI:10.1002/rmb2.12006]
27. Lejri I, Grimm A, Eckert A. Mitochondria, estrogen and female brain aging. Frontiers in aging neuroscience. 2018;10:124. [DOI:10.3389/fnagi.2018.00124]
28. Barbosa M, Shiguemoto G, Tomaz L, Ferreira F, Rodrigues M, Domingues M, et al. Resistance training and ovariectomy: Antagonic effects in mitochondrial biogenesis markers in rat skeletal muscle. International Journal of Sports Medicine. 2016:841-8. [DOI:10.1055/s-0042-107247]
29. Chung N, Park J, Lim K. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue. Journal of exercise nutrition & biochemistry. 2017;21(2):39. [DOI:10.20463/jenb.2017.0020]
30. Kang C, Chung E, Diffee G, Ji LL. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α. Experimental gerontology. 2013;48(11):1343-50. [DOI:10.1016/j.exger.2013.08.004]
31. Amoozgar SB, Jahangirfard M, Iman KN, Toutian S. The effect of 8 weeks of interval and resistance training on expression PGC 1α, AMPK, TFAM Elderly rat heart cells. 2021.
32. Steiner JL, Murphy EA, McClellan JL, Carmichael MD, Davis JM. Exercise training increases mitochondrial biogenesis in the brain. Journal of applied physiology. 2011;111(4):1066-71. [DOI:10.1152/japplphysiol.00343.2011]
33. Chang YK, Cho SH, Kim J-H. Association between leukocyte mitochondrial DNA copy number and regular exercise in postmenopausal women. Korean Journal of Family Medicine. 2016;37(6):334. [DOI:10.4082/kjfm.2016.37.6.334]
34. Yang SY, Mirabal CS, Newcomb CE, Stewart KJ, Arking DE. Mitochondrial DNA copy number, metabolic syndrome, and insulin sensitivity: Insights from the Sugar, Hypertension, and Physical Exercise studies. Plos one. 2022;17(7):e0270951. [DOI:10.1371/journal.pone.0270951]
35. Kratky D, Obrowsky S, Kolb D, Radovic B. Pleiotropic regulation of mitochondrial function by adipose triglyceride lipase-mediated lipolysis. Biochimie. 2014;96:106-12. [DOI:10.1016/j.biochi.2013.06.023]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by: Yektaweb