Volume 20, Issue 24 (3-2023)                   RSMT 2023, 20(24): 68-88 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kashef M, Ramez M, Ahmadi A. Exercise preconditioning: review. RSMT 2023; 20 (24) :68-88
URL: http://jsmt.khu.ac.ir/article-1-565-en.html
Shahid Rajaee Teacher Training University
Abstract:   (2205 Views)
It is estimated that by 2035, more than 130 million adults will suffer from various types of cardiovascular diseases. Therefore, it is very important to know the pathogens of cardiac diseases and investigate new treatments. Also, despite continuous progress in diagnosis, patient education, and risk factor management, myocardial infarction (MI) remains one of the most common causes of morbidity, hospitalization, and mortality worldwide. The events associated with MI are highly complex and characterized by rapid metabolic and biochemical changes. Exercise training is an effective cardioprotective strategy that reduces adverse effects of MI and ischemia/reperfusion (I/R). Multiple signaling pathways of exercise preconditioning in mitigating MI-induced cardiac damage is one of the topics that has attracted much attention. In this article, some of the contributing factors in exercise-induced cardiac protection, including mitochondrial changes, metabolic changes, vascular adaptations, antioxidant capacity, heat shock proteins, cyclooxygenase levels, ATP-sensitive potassium channels, adenosine, protein kinase C, calcium and klotho homeostasis are discussed.
 
Full-Text [PDF 1149 kb]   (1043 Downloads)    
Type of Study: Research | Subject: sport physiology
Received: 2022/07/3 | Accepted: 2022/11/17 | Published: 2023/03/6

References
1. 1. Kloner RA, Bolli R, Marban E, Reinlib L, Braunwald E. Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop. Circulation. 1998;97(18):1848-67. [DOI:10.1161/01.CIR.97.18.1848]
2. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124-36. [DOI:10.1161/01.CIR.74.5.1124]
3. Marongiu E, Crisafulli A. Cardioprotection acquired through exercise: the role of ischemic preconditioning. Current cardiology reviews. 2014;10(4):336-48. [DOI:10.2174/1573403X10666140404110229]
4. Aboutaleb N, Shamsaei N, Khaksari M, Erfani S, Rajabi H, Nikbakht F. Pre-ischemic exercise reduces apoptosis in hippocampal CA3 cells after cerebral ischemia by modulation of the Bax/Bcl-2 proteins ratio and prevention of caspase-3 activation. The Journal of Physiological Sciences. 2015;65(5):435-43. [DOI:10.1007/s12576-015-0382-7]
5. Bolli R. Preconditioning: a paradigm shift in the biology of myocardial ischemia. American Journal of Physiology-Heart and Circulatory Physiology. 2007;292(1):H19-H27. [DOI:10.1152/ajpheart.00712.2006]
6. Xie Y, Xiao J, Fu C, Zhang Z, Ye Z, Zhang X. Ischemic preconditioning promotes autophagy and alleviates renal ischemia/reperfusion injury. BioMed Research International. 2018;2018. [DOI:10.1155/2018/8353987]
7. Shamsaei N, Khaksari M, Erfani S, Rajabi H, Aboutaleb N. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia. Neural Regen Res. 2015;10(8):1245-50. [DOI:10.4103/1673-5374.162756]
8. Ramez M, Rajabi H, Ramezani F, Naderi N, Darbandi-Azar A, Nasirinezhad F. The greater effect of high-intensity interval training versus moderate-intensity continuous training on cardioprotection against ischemia-reperfusion injury through Klotho levels and attenuate of myocardial TRPC6 expression. BMC cardiovascular disorders. 2019;19(1):1-10. [DOI:10.1186/s12872-019-1090-7]
9. Annachhatre AS, Annachhatre SR. Preconditioning in cardiac anesthesia…… where are we? Annals of Cardiac Anaesthesia. 2019;22(4):412. [DOI:10.4103/aca.ACA_116_18]
10. Oldenburg O, Qin Q, Sharma AR, Cohen MV, Downey JM, Benoit JN. Acetylcholine leads to free radical production dependent on K(ATP) channels, G(i) proteins, phosphatidylinositol 3-kinase and tyrosine kinase. Cardiovasc Res. 2002;55(3):544-52. [DOI:10.1016/S0008-6363(02)00332-2]
11. Rahimi M, Asgari AR, Khoshbaten A. The role of exercise preconditioning in cardioprotection against ischemia-reperfusion injury. Physiology and Pharmacology. 2014;18(2):122-43.
12. Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol. 2001;38(2):307-14. [DOI:10.1016/S0735-1097(01)01377-8]
13. Maulik N, Goswami S, Galang N, Das DK. Differential regulation of Bcl-2, AP-1 and NF-κB on cardiomyocyte apoptosis during myocardial ischemic stress adaptation. FEBS letters. 1999;443(3):331-6. [DOI:10.1016/S0014-5793(98)01719-0]
14. Penna C, Alloatti G, Crisafulli A. Mechanisms involved in cardioprotection induced by physical exercise. Antioxidants & redox signaling. 2020;32(15):1115-34. [DOI:10.1089/ars.2019.8009]
15. Bolli R. The late phase of preconditioning. Circulation research. 2000;87(11):972-83. [DOI:10.1161/01.RES.87.11.972]
16. Ramez M, Nasirinezhad F, Rajabi H, Naderi N, Aboutaleb N. The effect of preconditioning with high intensity interval training on cardioprotection and left ventricular function against Ischemia-reperfusion injury in male rats. Daneshvar Medicine. 2018;26(2):1-10.
17. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiological reviews. 2003;83(4):1113-51. [DOI:10.1152/physrev.00009.2003]
18. Vinten-Johansen J, Zhao Z-Q, Jiang R, Zatta AJ, Dobson GP. Preconditioning and postconditioning: innate cardioprotection from ischemia-reperfusion injury. Journal of applied physiology. 2007;103(4):1441-8. [DOI:10.1152/japplphysiol.00642.2007]
19. Kavazis AN. Exercise preconditioning of the myocardium. Sports medicine. 2009;39(11):923-35. [DOI:10.2165/11317870-000000000-00000]
20. Quindry J, French J, Hamilton K, Lee Y, Mehta JL, Powers S. Exercise training provides cardioprotection against ischemia-reperfusion induced apoptosis in young and old animals. Experimental gerontology. 2005;40(5):416-25. [DOI:10.1016/j.exger.2005.03.010]
21. Ghanimati R, Rajabi H, Ramezani F, Ramez M, Bapiran M, Nasirinezhad F. The effect of preconditioning with high-intensity training on tissue levels of G-CSF, its receptor and C-kit after an acute myocardial infarction in male rats. BMC cardiovascular disorders. 2020;20(1):1-9. [DOI:10.1186/s12872-020-01380-w]
22. Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. Journal of Applied Physiology. 2011;111(3):905-15. [DOI:10.1152/japplphysiol.00004.2011]
23. Nocon M, Hiemann T, Müller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. European Journal of Preventive Cardiology. 2008;15(3):239-46. [DOI:10.1097/HJR.0b013e3282f55e09]
24. Thijssen DH, Redington A, George KP, Hopman MT, Jones H. Association of exercise preconditioning with immediate cardioprotection: a review. JAMA cardiology. 2018;3(2):169-76. [DOI:10.1001/jamacardio.2017.4495]
25. Thompson PD, Buchner D, Piña IL, Balady GJ, Williams MA, Marcus BH, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107(24):3109-16. [DOI:10.1161/01.CIR.0000075572.40158.77]
26. Domenech RlJ, Macho P, Vélez D, Sánchez G, Liu X, Dhalla N. Tachycardia preconditions infarct size in dogs: role of adenosine and protein kinase C. Circulation. 1998;97(8):786-94. [DOI:10.1161/01.CIR.97.8.786]
27. Domenech R, Macho P, Schwarze H, Sánchez G. Exercise induces early and late myocardial preconditioning in dogs. Cardiovascular research. 2002;55(3):561-6. [DOI:10.1016/S0008-6363(02)00334-6]
28. French JP, Hamilton KL, Quindry JC, Lee Y, Upchurch PA, Powers SK. Exercise‐induced protection against myocardial apoptosis and necrosis: MnSOD, calcium‐handling proteins, and calpain. The FASEB Journal. 2008;22(8):2862-71. [DOI:10.1096/fj.07-102541]
29. Cavarretta E, Mastroiacovo G, Lupieri A, Frati G, Peruzzi M. The positive effects of exercise in chemotherapy-related cardiomyopathy. Exercise for Cardiovascular Disease Prevention and Treatment: Springer; 2017. p. 103-29. [DOI:10.1007/978-981-10-4304-8_8]
30. Rahimi M, Shekarforoush S, Asgari AR, Khoshbaten A, Rajabi H, Bazgir B, et al. The effect of high intensity interval training on cardioprotection against ischemia-reperfusion injury in wistar rats. EXCLI journal. 2015;14:237.
31. Wojcik B, Knapp M, Gorski J. Non-ischemic heart preconditioning. J Physiol Pharmacol. 2018;69:173-84.
32. Serra AJ, Santos MH, Bocalini DS, Antônio EL, Levy RF, Santos AA, et al. Exercise training inhibits inflammatory cytokines and more than prevents myocardial dysfunction in rats with sustained β‐adrenergic hyperactivity. The Journal of physiology. 2010;588(13):2431-42. [DOI:10.1113/jphysiol.2010.187310]
33. Zdrenghea D, Ilea M, Predescu D, Potang E. Ischemic preconditioning during successive exercise testing. Romanian journal of internal medicine= Revue roumaine de medecine interne. 1998;36(3-4):161-5.
34. Lambiase PD, Edwards RJ, Cusack MR, Bucknall CA, Redwood SR, Marber MS. Exercise-induced ischemia initiates the second window of protection in humans independent of collateral recruitment. Journal of the American College of Cardiology. 2003;41(7):1174-82. [DOI:10.1016/S0735-1097(03)00055-X]
35. Powers SK, Smuder AJ, Kavazis AN, Quindry JC. Mechanisms of exercise-induced cardioprotection. Physiology. 2014;29(1):27-38. [DOI:10.1152/physiol.00030.2013]
36. Lee Y, Min K, Talbert EE, Kavazis AN, Smuder AJ, Willis WT, et al. Exercise protects cardiac mitochondria against ischemia-reperfusion injury. Medicine and science in sports and exercise. 2012;44(3):397-405. [DOI:10.1249/MSS.0b013e318231c037]
37. Starnes JW, Barnes BD, Olsen ME. Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction. Journal of Applied Physiology. 2007;102(5):1793-8. [DOI:10.1152/japplphysiol.00849.2006]
38. Kavazis AN, McClung JM, Hood DA, Powers SK. Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. Am J Physiol Heart Circ Physiol. 2008;294(2):H928-35. [DOI:10.1152/ajpheart.01231.2007]
39. Ghahremani R, Salehi I, Komaki A, Damirchi A. Preconditioning Effect of High-Intensity Aerobic Training on Myocardial Ischemia-Reperfusion Injury and Beclin-1 Gene Expression in Rats. Physical Treatments-Specific Physical Therapy Journal. 2018;8(2):115-21. [DOI:10.32598/ptj.8.2.115]
40. Yamamura K, Steenbergen C, Murphy E. Protein kinase C and preconditioning: role of the sarcoplasmic reticulum. American Journal of Physiology-Heart and Circulatory Physiology. 2005;289(6):H2484-H90. [DOI:10.1152/ajpheart.00590.2005]
41. Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovascular research. 2006;70(2):240-53. [DOI:10.1016/j.cardiores.2006.01.017]
42. Xia Z, Li H, Irwin M. Myocardial ischaemia reperfusion injury: the challenge of translating ischaemic and anaesthetic protection from animal models to humans. BJA: British Journal of Anaesthesia. 2016;117(suppl_2):ii44-ii62. [DOI:10.1093/bja/aew267]
43. Thijssen DH, Uthman L, Somani Y, van Royen N. Short‐term exercise‐induced protection of cardiovascular function and health: why and how fast does the heart benefit from exercise? The Journal of Physiology. 2022;600(6):1339-55. [DOI:10.1113/JP282000]
44. Suzuki K, Murtuza B, Sammut IA, Latif N, Jayakumar J, Smolenski RT, et al. Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction. Circulation. 2002;106(12_suppl_1):I-270-I-6. [DOI:10.1161/01.cir.0000032880.55215.92]
45. Golbidi S, Laher I. Molecular mechanisms in exercise-induced cardioprotection. Cardiology research and practice. 2011;2011. [DOI:10.4061/2011/972807]
46. Quindry JC, Hamilton KL, French JP, Lee Y, Murlasits Z, Tumer N, et al. Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis. J Appl Physiol (1985). 2007;103(3):1056-62. [DOI:10.1152/japplphysiol.00263.2007]
47. Demirel HA, Powers SK, Zergeroglu MA, Shanely RA, Hamilton K, Coombes J, et al. Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Journal of applied physiology. 2001;91(5):2205-12. [DOI:10.1152/jappl.2001.91.5.2205]
48. Marongiu E, Crisafulli A. Cardioprotection acquired through exercise: the role of ischemic preconditioning. Curr Cardiol Rev. 2014;10(4):336-48. [DOI:10.2174/1573403X10666140404110229]
49. Melling CW, Thorp DB, Milne KJ, Krause MP, Noble EG. Exercise-mediated regulation of Hsp70 expression following aerobic exercise training. Am J Physiol Heart Circ Physiol. 2007;293(6):H3692-8. [DOI:10.1152/ajpheart.00827.2007]
50. Stein AB, Tang X-L, Guo Y, Xuan Y-T, Dawn B, Bolli R. Delayed adaptation of the heart to stress: late preconditioning. Stroke. 2004;35(11_suppl_1):2676-9. [DOI:10.1161/01.STR.0000143220.21382.fd]
51. Maejima Y, Adachi S, Morikawa K, Ito H, Isobe M. Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. Journal of molecular and cellular cardiology. 2005;38(1):163-74. [DOI:10.1016/j.yjmcc.2004.10.012]
52. Lefer DJ. Nitrite therapy for protection against ischemia-reperfusion injury. American Journal of Physiology-Renal Physiology. 2006. [DOI:10.1152/ajprenal.00470.2005]
53. Calvert JW, Lefer DJ. Role of β-adrenergic receptors and nitric oxide signaling in exercise-mediated cardioprotection. Physiology. 2013;28(4):216-24. [DOI:10.1152/physiol.00011.2013]
54. Guo Y, Wu W-J, Zhu X-P, Li Q, Tang X-L, Bolli R. Exercise-induced late preconditioning is triggered by generation of nitric oxide. Journal of Molecular and Cellular Cardiology. 2001;6(33):A41. [DOI:10.1016/S0022-2828(01)90163-4]
55. Akita Y, Otani H, Matsuhisa S, Kyoi S, Enoki C, Hattori R, et al. Exercise-induced activation of cardiac sympathetic nerve triggers cardioprotection via redox-sensitive activation of eNOS and upregulation of iNOS. American Journal of Physiology-Heart and Circulatory Physiology. 2007;292(5):H2051-H9. [DOI:10.1152/ajpheart.01102.2006]
56. Vogt AM, Poolman M, Ackermann C, Yildiz M, Schoels W, Fell DA, et al. Regulation of glycolytic flux in ischemic preconditioning: a study employing metabolic control analysis. Journal of Biological Chemistry. 2002;277(27):24411-9. [DOI:10.1074/jbc.M201138200]
57. Van Winkle DM, Chien GL, Wolff RA, Soifer BE, Kuzume K, Davis RF. Cardioprotection provided by adenosine receptor activation is abolished by blockade of the KATP channel. American Journal of Physiology-Heart and Circulatory Physiology. 1994;266(2):H829-H39. [DOI:10.1152/ajpheart.1994.266.2.H829]
58. Piper H, Abdallah Y, Schäfer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovascular research. 2004;61(3):365-71. [DOI:10.1016/j.cardiores.2003.12.012]
59. Burelle Y, Wambolt RB, Grist M, Parsons HL, Chow JC, Antler C, et al. Regular exercise is associated with a protective metabolic phenotype in the rat heart. American Journal of Physiology-Heart and Circulatory Physiology. 2004;287(3):H1055-H63. [DOI:10.1152/ajpheart.00925.2003]
60. Bowles D, Starnes JW. Exercise training improves metabolic response after ischemia in isolated working rat heart. Journal of Applied Physiology. 1994;76(4):1608-14. [DOI:10.1152/jappl.1994.76.4.1608]
61. Powers SK, Demirel HA, Vincent HK, Coombes JS, Naito H, Hamilton KL, et al. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1998;275(5):R1468-R77. [DOI:10.1152/ajpregu.1998.275.5.R1468]
62. Tao L, Bei Y, Lin S, Zhang H, Zhou Y, Jiang J, et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cellular Physiology and Biochemistry. 2015;37(1):162-75. [DOI:10.1159/000430342]
63. Freimann S, Scheinowitz M, Yekutieli D, Feinberg MS, Eldar M, Kessler-Icekson G. Prior exercise training improves the outcome of acute myocardial infarction in the rat: heart structure, function, and gene expression. Journal of the American College of Cardiology. 2005;45(6):931-8. [DOI:10.1016/j.jacc.2004.11.052]
64. Frasier CR, Moukdar F, Patel HD, Sloan RC, Stewart LM, Alleman RJ, et al. Redox-dependent increases in glutathione reductase and exercise preconditioning: role of NADPH oxidase and mitochondria. Cardiovascular research. 2013;98(1):47-55. [DOI:10.1093/cvr/cvt009]
65. Lennon S, Quindry J, French J, Kim S, Mehta J, Powers S. Exercise and myocardial tolerance to ischaemia‐reperfusion. Acta physiologica Scandinavica. 2004;182(2):161-9. [DOI:10.1111/j.1365-201X.2004.01346.x]
66. Chowdhury MA, Sholl HK, Sharrett MS, Haller ST, Cooper CC, Gupta R, et al. Exercise and cardioprotection: a natural defense against lethal myocardial ischemia-reperfusion injury and potential guide to cardiovascular prophylaxis. Journal of cardiovascular pharmacology and therapeutics. 2019;24(1):18-30. [DOI:10.1177/1074248418788575]
67. Frasier CR, Sloan RC, Bostian PA, Gonzon MD, Kurowicki J, LoPresto SJ, et al. Short-term exercise preserves myocardial glutathione and decreases arrhythmias after thiol oxidation and ischemia in isolated rat hearts. Journal of Applied Physiology. 2011;111(6):1751-9. [DOI:10.1152/japplphysiol.01214.2010]
68. French JP, Quindry JC, Falk DJ, Staib JL, Lee Y, Wang KK, et al. Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. American Journal of Physiology-Heart and Circulatory Physiology. 2006;290(1):H128-H36. [DOI:10.1152/ajpheart.00739.2005]
69. Piper HM, Meuter K, Schäfer C. Cellular mechanisms of ischemia-reperfusion injury. The Annals of thoracic surgery. 2003;75(2):S644-S8. [DOI:10.1016/S0003-4975(02)04686-6]
70. Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol. 2003;285(3):H921-30. [DOI:10.1152/ajpheart.00421.2003]
71. Brown DA, Chicco AJ, Jew KN, Johnson MS, Lynch JM, Watson PA, et al. Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol. 2005;569(Pt 3):913-24. [DOI:10.1113/jphysiol.2005.095729]
72. Quindry JC, Miller L, McGinnis G, Kliszczewicz B, Irwin JM, Landram M, et al. Ischemia reperfusion injury, KATP channels, and exercise-induced cardioprotection against apoptosis. Journal of Applied Physiology. 2012;113(3):498-506. [DOI:10.1152/japplphysiol.00957.2011]
73. Costa AD, Quinlan CL, Andrukhiv A, West IC, Jaburek M, Garlid KD. The direct physiological effects of mitoKATP opening on heart mitochondria. American Journal of Physiology-Heart and Circulatory Physiology. 2006;290(1):H406-H15. [DOI:10.1152/ajpheart.00794.2005]
74. Brown DA, Lynch JM, Armstrong CJ, Caruso NM, Ehlers LB, Johnson MS, et al. Susceptibility of the heart to ischaemia-reperfusion injury and exercise‐induced cardioprotection are sex‐dependent in the rat. The Journal of physiology. 2005;564(2):619-30. [DOI:10.1113/jphysiol.2004.081323]
75. Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. American Journal of Physiology-Heart and Circulatory Physiology. 2012;302(1):H10-H23. [DOI:10.1152/ajpheart.00574.2011]
76. McElroy CL, Gissen SA, Fishbein M. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation. 1978;57(5):958-62. [DOI:10.1161/01.CIR.57.5.958]
77. Brown DA, Jew KN, Sparagna GC, Musch TI, Moore RL. Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. J Appl Physiol (1985). 2003;95(6):2510-8. [DOI:10.1152/japplphysiol.00487.2003]
78. Leon AS. Biological mechanisms for the cardioprotective effects of aerobic exercise. American Journal of Lifestyle Medicine. 2009;3(1_suppl):32S-4S. [DOI:10.1177/1559827609332348]
79. Quindry JC, French J, Hamilton KL, Lee Y, Selsby J, Powers S. Exercise does not increase cyclooxygenase-2 myocardial levels in young or senescent hearts. The Journal of Physiological Sciences. 2010;60(3):181-6. [DOI:10.1007/s12576-009-0082-2]
80. Martín-Núñez E, Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Implications of Klotho in vascular health and disease. World journal of cardiology. 2014;6(12):1262. [DOI:10.4330/wjc.v6.i12.1262]
81. Xu Y, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocrine reviews. 2015;36(2):174-93. [DOI:10.1210/er.2013-1079]
82. Wang Y, Sun Z. Current understanding of klotho. Ageing research reviews. 2009;8(1):43-51. [DOI:10.1016/j.arr.2008.10.002]
83. Saito Y, Nakamura T, Ohyama Y, Suzuki T, Iida A, Shiraki-Iida T, et al. In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochemical and biophysical research communications. 2000;276(2):767-72. [DOI:10.1006/bbrc.2000.3470]
84. Semba RD, Cappola AR, Sun K, Bandinelli S, Dalal M, Crasto C, et al. Plasma klotho and cardiovascular disease in adults. Journal of the American Geriatrics Society. 2011;59(9):1596-601. [DOI:10.1111/j.1532-5415.2011.03558.x]
85. Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circulation research. 2005;96(4):412-8. [DOI:10.1161/01.RES.0000157171.04054.30]
86. Rhee E-J, Oh K-W, Lee W-Y, Kim S-Y, Jung C-H, Kim B-J, et al. The differential effects of age on the association of KLOTHO gene polymorphisms with coronary artery disease. Metabolism. 2006;55(10):1344-51. [DOI:10.1016/j.metabol.2006.05.020]
87. Saghiv M, Ben Sira D, Sagiv M. Comparison between aerobic and anaerobic training influence on s-Klotho blood levels following 60 min aerobic bout. JJ Physiology. 2015;1(1):004.
88. Saghiv M, Sherve C, Ben-Sira D, Sagiv M, Goldhammer E. Aerobic training effect on blood S-Klotho levels in coronary artery disease patients. Journal of Clinical & Experimental Cardiology. 2016;7:1-4. [DOI:10.4172/2155-9880.1000464]
89. Matsubara T, Miyaki A, Akazawa N, Choi Y, Ra S-G, Tanahashi K, et al. Aerobic exercise training increases plasma Klotho levels and reduces arterial stiffness in postmenopausal women. American Journal of Physiology-Heart and Circulatory Physiology. 2014;306(3):H348-H55. [DOI:10.1152/ajpheart.00429.2013]
90. Ramez M, Ramezani F, Nasirinezhad F, Rajabi H. High‐intensity interval training increases myocardial levels of Klotho and protects the heart against ischaemia-reperfusion injury. Experimental physiology. 2020;105(4):652-65. [DOI:10.1113/EP087994]
91. Marefati H, Aminizadeh S, Najafipour H, Dabiri S, Shahouzehi B. The effects of moderate-intensity interval training on the resistance to induced cardiac ischemia in adult male rats. Qom University of Medical Sciences Journal. 2016;10(4):1-9.
92. Shen Y-J, Pan S-S, Zhuang T, Wang F-J. Exercise preconditioning initiates late cardioprotection against isoproterenol-induced myocardial injury in rats independent of protein kinase C. The Journal of Physiological Sciences. 2011;61(1):13-21. [DOI:10.1007/s12576-010-0116-9]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by: Yektaweb