Mr Aidin Zarifi, Dr Hamid Rajabi, Dr Sadegh Hasan Nia, Dr Mohamadreza Dehkhoda, Dr Babak Mirsoltani,
Volume 13, Issue 10 (10-2015)
High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that
resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid
oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites,
including the transport of fatty acids across the plasma membrane. The transportation across this membrane is
recognized to be primarily protein mediated. Therefore, the purpose of this study was to determine the effect of
low-volume high intensity interval training on protein content of sarcolemmal fatty acids transporters (FAT/CD36
and FABPpm) in young men. Twenty recreationally active young men were assigned to a HIT (n=10, 19.3 yr old,
67.2 kg body wt, and 172.7 cm ht) or Control (n=10, 19.7 yr old, 65.9 kg body wt, and 174.4 cm ht) group. HIT
group performed three training sessions per week over 4 weeks. Each session consisted of 8-11×60 s intervals
at ∼100% of peak power output elicited during a ramp VO2peak test separated by 75 s of recovery. Skeletal
muscle (vastus lateralis) biopsy samples were obtained before and after training. HIT increased (17.5%)VO2peak (p<0.05). Also, after 4 weeks low-volume HIT, sarcolemmal content of CD36 and FABPpm increased
14 and 25 percent ,respectively (p<0.05). Therefore, the results showed that the practical model of low-volume
HIT could increase aerobic capacity and sarcolemmal content of CD36 and FABPpm. The increase indicates
that the facilitation of in muscle fatty acid transportation can be adapted which in turn increases the fat oxidation
capacity.