Search published articles


Showing 2 results for Time To Exhaustion

Dr Abbas Saremi, Dr Masood Golpayegani, Mrs Zeinab Moradi,
Volume 13, Issue 10 (10-2015)
Abstract

Introdiction and Aim: Nowadays, due to the epidemic of sports supplements, the effects of these
supplements on athletic performance require analysis and evaluation.The aim of the present study was to
investigate the effect of arginine supplementation for one week on oxygen uptake kinetics and time to
exhaustion in female taekwondo athletes.
Method: In this semi-experimental study with pretest – posttest design, eighty female taekwondo athletes
(age: 19.88±2.33 y, height: 167.53±6.04 cm, weight: 60.98±2.4 kg) were randomly assigned to argenine
supplementation (n=9) or placebo (n=9) groups. Subjects performed the incremental test (initially, the work
load 50 watts and 30 watts increase in workload every minutes, as long as subjects will be able to maintain
the highest pedal rate and the failure to reach). To simulate a taekwondo match day test session consisted
of three maximal incremental test intervals (1 to 2 hours). The experimental group was supplemented with
6g arginine powder and placebo group received 6g microcrystalline cellulose each day for one week.
Seven days after, post test accordingly pretest was used by all subjects. Pulmonary gas exchange was
measured by gas analyzer to breath-by breath method. Oxygen uptake kinetics variables (oxygen deficit,
time constant 1, time constant 2) were evaluated by gas analyzer with breath-by breath method. Data was
analyzed using two ways ANOVA.
Results: The time to exhaustion was extended following consumption of arginine (p<0.05). Also the
findings showed that arginine supplementation resulted in a speeding of the oxygen uptake kinetic (oxygen
deficit, time constant 1, time constant 2) (p<0.05).
Conclusion: It seems that arginine supplementation improves oxygen kinetics factors and time to
exhaustion in female taekwondo athletes.


E Fasihi Ramandi, N Khaledi,
Volume 18, Issue 19 (7-2020)
Abstract

Diabetes is a common metabolic disease. In diabetic patients glucose uptake is reduced and FGF-21 plays an important role in glucose uptake, alsoTNF-α is an inflammatory factor that increases in diabetes. The purpose of this study was to investigate the effect of 6 weeks of HIIT training on the gene expression FGF-21 in the liver and the serum TNF-α level of male diabetic rats. For this purpose, 48 Wistar rats were randomly divided into four groups Control, diabetes, high intensity interval training, and diabetes and high intensity interval training. For the induction of diabetes, peritoneal injection (Streptozotocin 50 mg/kg) was used. Training protocol including 10 set of 1-minute running (between each set of 2 minutes of rest) 3 sessions per week and was completed within 6 weeks. Finally, after the extraction of liver samples, the expression of the FGF-21 gene was measured by Real Time PCR and serum TNF-α level with ELISA kit.There was no significant change in expression of FGF-21 in any group, but the reduction of serum levels of inflammatory factors, such as TNF-α protein at the level of significance (p=0.05), and maintaining and improving the time to exhaustion, was shown by high intensity interval training (0.000).Likely the inflammatory factors of diabetes such as TNF-α have a deleterious effect on the expression and binding of FGF-21 (β-Klotho) cofactors And causes resistance to FGF-21 into various tissues of the body, such as the liver. Exercise can reduce inflammation caused by diabetes.
 


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by: Yektaweb