Volume 6, Issue 4 (12-2019)                   nbr 2019, 6(4): 402-414 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Daneshvar M, Maleki M, Shakeri S, Baghizadeh A. Screening and identification of Iranian native phosphate solubilizing bacteria and investigation of their genetic diversity using RAPD markers. nbr 2019; 6 (4) :402-414
URL: http://nbr.khu.ac.ir/article-1-2756-en.html
Graduate University of Advanced Technology, Kerman , maleki.li@gmail.com
Abstract:   (5141 Views)

Phosphorus, the most essential nutrient for plants, becomes quickly unavailable for the plants in the soil. Phosphate solubilizing bacteria (PSB( can play an important role in providing Phosphorus for plants. In this study, the PSBs were screened from plant rhizosphere by Pikovskaya method. Then, the growth rate and phosphate solubilizing ability of 9 superior strains were measured at different temperatures and levels of salinity and pH. The best strain was identified by 16S rDNA gene sequence analysis. Finally, the genetic diversity of phosphate solubilizing strains were examined by RAPD markers. Results showed that 25 strains were capable of solubilizing insoluble phosphates among the 57 isolates studied. Of the nine superior strains, Cke1 had the highest solubilizing index with the average growth rate under all conditions and was introduced as the best PSB strain identified in the present study. 16S rDNA gene sequence analysis showed that this strain belonged to the Enterobacter genus. The results of genetic variation showed that all stains were divided into six groups and three strains that had the lowest similarity with other strains were placed in three separate groups. Given that Cke1 strain has the ability of solubilizing the insoluble phosphate in different stresses, it can be a good candidate for providing phosphorus at temperatures of 30 and 35 °C, 1.2% and 1.8% salinity levels and pH levels of 6 and 8 for the crops.

Full-Text [PDF 1100 kb]   (1143 Downloads)    
Type of Study: Original Article | Subject: Microbiology
Received: 2017/02/15 | Revised: 2020/02/24 | Accepted: 2019/11/5 | Published: 2020/01/8 | ePublished: 2020/01/8

References
1. Aarab, S., Ollero, F.J., Megías, M., Laglaoui, A., Bakkali, M. and Arakrak, A. 2015. Isolation and screening of bacteria from rhizospheric soils of rice fields in Northwestern Morocco for different plant growth promotion (PGP) activities: An in vitro study. - IJCMAS 4: 260-269.
2. Afzal, A., M. Ashraf, A. Saeed, Asad and Farooq, M. 2005. Effect of phosphate solubilizing microorganisms on phos- phorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. - IJAB 7: 1560-8530.
3. Alikhani, H.A., Saleh-Rastin, N. and Antoun, H. 2007. Phosphate solubilization activity of rhizobia native to Iranian soils. In First international Meeting on microbial phosphate solubilization. - Springer Netherlands, pp: 35-41. [DOI:10.1007/978-1-4020-5765-6_4]
4. Ausubel, F.M. ed. 2002. Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology. Wiley, 1512 pp.
5. Banerjee, S., Palit, R., Sengupta, C. and Standing, D. 2010. Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. - AJCS 4: 378-383.
6. Benlloch-González, M., Fournier, J.M., Ramos, J. and Benlloch, M. 2005. Strategies underlying salt tolerance in halophytes are present in Cynara cardunculus. - Plant Sci. 168: 653-659. [DOI:10.1016/j.plantsci.2004.09.035]
7. Bolan, N.S., Adriano, D.C. and Naidu, R. 2003. Role of phosphorus in (im) mobilization and bioavailability of heavy metals in the soil-plant system. - Rev. Environ. Contam. Toxicol. 177: 1- 44. [DOI:10.1007/0-387-21725-8_1]
8. Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H. and Sa, T. 2005. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. - Soil. Biol. Biochem. 37: 1970-1974. [DOI:10.1016/j.soilbio.2005.02.025]
9. Galledari, N., Maleki, M., Shakeri, S. and Baghizadeh, A. 2015. Investigation of genetic diversity and molecular identification of IAA producing bacteria using RAPD marker and 16S rDNA sequence analysis. - G3M 13: 4054-4061.
10. Harris, J.N., New, P.B. and Martin, P.M. 2006. Laboratory tests can predict beneficial effects of phosphate-solubilising bacteria on plants. - Soil. Biol. Biochem. 38: 1521-1526. [DOI:10.1016/j.soilbio.2005.11.016]
11. Hu, X.J., Li, Z.J., Cao, Y.C., Zhang, J., Gong, Y.X. and Yang, Y.F. 2010. Isolation and identification of a phosphate-solubilizing bacterium Pantoea stewartii subsp. stewartii g6, and effects of temperature, salinity, and pH on its growth under indoor culture conditions. - Aquac. Int. 18: 1079-1091. [DOI:10.1007/s10499-010-9325-8]
12. Johri, J.K., Surange, S. and Nautiyal, C.S. 1999. Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. - Curr. Microbiol. 39: 89-93. [DOI:10.1007/s002849900424]
13. Laslo, É., György, É., Mara, G., Tamás, É., Ábrahám, B. and Lányi, S. 2012. Screening of plant growth promoting rhizobacteria as potential microbial inoculants. - Crop Prot. 40: 43-48. [DOI:10.1016/j.cropro.2012.05.002]
14. Liu, F.P., Liu, H.Q., Zhou, H.L., Dong, Z.G., Bai, X.H., Bai, P. and Qiao, J.J. 2014. Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils. - Biol. Fertil. Soils 50: 927-937. [DOI:10.1007/s00374-014-0913-z]
15. Malboobi, M.A., Owlia, P., Behbahani, M., Sarokhani, E., Moradi, S., Yakhchali, B., Deljou, A. and Heravi, K.M. 2009. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. - World J. Microbiol. Biotechnol. 25: 1471-1477. [DOI:10.1007/s11274-009-0037-z]
16. Martinez, M. and Martinez, A. 2007. Effects of phosphate-solubilizing bacteria during the rooting period of sugar cane (Saccharum officinarum), Venezuela 51-71 variety, on the grower's oasis substrate. In First International Meeting on Microbial Phosphate Solubilization. - Springer, Netherlands, pp: 317-323. [DOI:10.1007/978-1-4020-5765-6_50]
17. McLaughlin, M.J., Tiller, K.G., Naidu, R. and Stevens, D.P. 1996. Review: the behaviour and environmental impact of contaminants in fertilizers. - Soil Res. 34: 1-54. [DOI:10.1071/SR9960001]
18. Midekssa, M.J., Loscher, C.R., Schmitz, R.A. and Assefa, F. 2015. Characterization of phosphate solubilizing rhizobacteria isolated from lentil growing areas of Ethiopia. - Afr. J. Microbiol. Res. 9: 1637-1648. [DOI:10.5897/AJMR2015.7473]
19. Muleta, D., Assefa, F., Börjesson, E. and Granhall, U. 2013. Phosphate-solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. - J. Saudi Society Agric. Sci. 12: 73-84. [DOI:10.1016/j.jssas.2012.07.002]
20. Munns, R. 2002. Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
21. Naghavi, M.R., Malaki, M., Alizadeh, H., Pirseiedi, M. and Mardi, M. 2010. An assessment of genetic diversity in wild diploid wheat Triticum boeoticum from west of Iran using RAPD, AFLP and SSR markers. - JAST 11: 585-598.
22. Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. - Fems. Microbiol. Lett. 170: 265-270. [DOI:10.1111/j.1574-6968.1999.tb13383.x]
23. Nautiyal, C.S., Bhadauria, S., Kumar, P., Lal, H., Mondal, R. and Verma, D. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. - Fems Microbiol Lett. 182: 291-296. [DOI:10.1111/j.1574-6968.2000.tb08910.x]
24. Nguyen, C., Yan, W., Tacon, F. and Lapeyrie, F. 1992. Genetic variability of phosphate solubilizing activity by monocaryotic and dicaryotic mycelia of the ectomycorrhizal fungus Laccaria bicolor (Maire) PD Orton. - Plant Soil 143: 193-199. [DOI:10.1007/BF00007873]
25. Perez, E., Sulbaran, M., Ball, M.M. and Yarzábal, L.A. 2007. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. - Soil Biol. Biochem. 39: 2905-2914. [DOI:10.1016/j.soilbio.2007.06.017]
26. Picard, C., Di Cello, F., Ventura, M., Fani, R. and Guckert, A. 2000. Frequency and biodiversity of 2, 4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. - Appl. Environ. Microbiol. 66: 948-955. [DOI:10.1128/AEM.66.3.948-955.2000]
27. Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. - Mikrobiologiya 17: 362- 370.
28. Ouzhand, B., Maleki, M., Soltani, M. and Shakeri, S. 2016. Molecular identification of the Iranian native ACC deaminase producing rhizobacteria using 16S rDNA sequence analysis. - G3M 14: 4242-4249.
29. Robson, A.D., O'hara, G.W. and Abbott, L.K. 1981. Involvement of phosphorus in nitrogen fixation by subterranean clover (Trifolium subterraneum L.). - Funct. Plant Biol. 8: 427-436. [DOI:10.1071/PP9810427]
30. Rohlf, F.J. 1997. NTSYSpc numerical taxonomy and multivariate analysis system, version 2.00. Exeter Software, Setauket, New York, 31 pp.
31. Sahu, S.N. and Jana, B.B. 2000. Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. - Ecol. Eng. 15: 27-39. [DOI:10.1016/S0925-8574(99)00013-0]
32. Syers, J.K., Johnston, A.E. and Curtin, D. 2008. Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin, 18.
33. Tian, F., Ding, Y., Zhu, H., Yao, L. and Du, B. 2009. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. - Braz. J. Microbiol. 40: 276-284. [DOI:10.1590/S1517-83822009000200013]
34. Tripathi, A.K., Mishra, B.M. and Tripathi, P. 1998. Salinity stress responses in the plant growth promoting rhizobacteria, Azospirillum spp.- J. Bioscience. 23: 463-471. [DOI:10.1007/BF02936140]
35. Vessey, J.K., K. Pawlowski and Bergman, B. 2004. Root-based N2- fixing symbioses: Legumes, actinorhizal plants, Parasponia sp., and cycads. - Plant Soil 266: 205-230. [DOI:10.1007/s11104-005-0871-1]
36. Upadhyay, S.K., Singh, D.P. and Saikia, R. 2009. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. - Curr. Microbiol. 59: 489-496. [DOI:10.1007/s00284-009-9464-1]
37. Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. - Nucleic Acids Res. 18: 6531-6535. [DOI:10.1093/nar/18.22.6531]
38. Xiang, W.L., Liang, H.Z., Liu, S., Luo, F., Tang, J., Li, M.Y. and Che, Z.M. 2011. Isolation and performance evaluation of halotolerant phosphate solubilizing bacteria from the rhizospheric soils of historic Dagong Brine Well in China. - World J. Microb. Biot. 27: 2629-2637. [DOI:10.1007/s11274-011-0736-0]
39. Yadav, H., Gothwal, R.K., Solanki, P.S., Nehra, S., Sinha-Roy, S. and Ghosh, P. 2015. Isolation and characterization of thermo-tolerant phosphate-solubilizing bacteria from a phosphate mine and their Rock Phosphate Solubilizing Abilities. - Geomicrobiol. J. 32: 475-481. [DOI:10.1080/01490451.2014.943856]
40. Yildirim, E.R.T.A.N., Turan, M.E.T.I.N. and Donmez, M.F. 2008. Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. - Roumanian Biotechnol. Lett. 13: 3933-3943.
41. Young, C.C., F.T. Shen, W.A. Lai, M.H. Hung, W.S. Huang, A.B. Arun and Lu, H.L. 2003. Biochemical and molecular characterization of phosphate solubilizing bacteria from Taiwan soil. - Proceeding of 2nd International Symposium on Phosphorus Dynamics in the Soil-Plant Continuum. Perth, Australia, pp: 44-45.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb