Volume 6, Issue 4 (12-2019)                   nbr 2019, 6(4): 391-401 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maleki M, Naghshbandi M P, Hajihassan Z. Magentotactic bacteria and their applications. nbr 2019; 6 (4) :391-401
URL: http://nbr.khu.ac.ir/article-1-2997-en.html
Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran , hajihasan@ut.ac.ir
Abstract:   (6475 Views)
Magentotactic bacteria are the types of bacteria capable of orientation in an external magnetic field because of the ability to produce structures called magnetosomes. Magnetosomes, nanometer-scale structures, are present in most of the magnetotactice bacteria. They are intracellular organelles composed of magnetic iron mineral crystals individually surrounded by a phospholipid layer. Because of the unique features of magnetosomes, magentotactic bacteria have become the fascinating subject of research in many research and applied fields of study, including robotics, medicine, biology, environment and geology. In this review, we have tried to introduce magentotactic bacteria, the formation of magnetosomes and their structures, in order to highlight the importance of these bacteria. Finally, some applications of these bacteria in different areas of research, e.g. targeted drug delivery, cancer treatment and removal of heavy metals from water, were described in order that a better understanding of their applications could be obtained.
Full-Text [PDF 1097 kb]   (1904 Downloads)    
Type of Study: Review | Subject: Microbiology
Received: 2017/11/22 | Revised: 2020/02/24 | Accepted: 2019/06/2 | Published: 2020/01/8 | ePublished: 2020/01/8

References
1. Abreu, F., Martins, J.L., Silveira, T.S., Keim, C.N., H de Barros, G.L., Gueiros Filho, F.J. and Lins, U. 2007. Candidatus Magnetoglobus multicellularis, a multicellular, magnetotactic prokaryote from a hypersaline environment. - Int. J. Syst. Evol. Microbiol. 57: 1318-1322. [DOI:10.1099/ijs.0.64857-0]
2. Alphandéry, E. 2014. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. - Front. bioeng. biotechnol. 2: 5. [DOI:10.3389/fbioe.2014.00005]
3. Alphandéry, E., Chebbi, I., Guyot, F. and Durand-Dubief, M. 2013. Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review. - Int. J. Hyperth. 29: 801-809. [DOI:10.3109/02656736.2013.821527]
4. Alphandery, E., Faure, S., Seksek, O., Guyot, F.O. and Chebbi, I. 2011. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. - ACS Nano. 5: 6279-6296. [DOI:10.1021/nn201290k]
5. Alphandéry, E., Guyot, F. and Chebbi, I. 2012. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia ‌- Int. J. Pharm. 434: 444-452. [DOI:10.1016/j.ijpharm.2012.06.015]
6. Amann, R., Peplies, J. and Schüler, D. 2006. Diversity and taxonomy of magnetotactic bacteria. Magnetoreception and magnetosomes in bacteria. - Springer, Berlin, pp: 25-36. [DOI:10.1007/7171_037]
7. Arakaki, A., Masuda, F., Amemiya, Y., Tanaka, T. and Matsunaga, T. 2010. Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria. - J. Colloid. Interface Sci. 343: 65-70. [DOI:10.1016/j.jcis.2009.11.043]
8. Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T. and Matsunaga, T. 2008. Formation of magnetite by bacteria and its application. - J. Royal. Soc. Interface. 5: 977-999. [DOI:10.1098/rsif.2008.0170]
9. Bansal, A., Jackson, B., West, K., Wang, S., Lu, S., Kennedy, J.S. and Goepfert, P.A. 2008. Multifunctional T-cell characteristics induced by a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 vaccine regimen given to healthy adults are dependent on the route and dose of administration. - J. Virol. 82: 6458-6469. [DOI:10.1128/JVI.00068-08]
10. Barton, L., Bazylinski, D. and Xu, H. 2014. Nanomicrobio- logy: Physiological and Environmental Characteristics. ‌- Springer, Berlin, 183 pp. [DOI:10.1007/978-1-4939-1667-2]
11. Bazylinski, D.A. and Frankel, R.B. 2004. Magnetosome formation in prokaryotes. - Nat. Rev. Microbiol. 2: 217-230. [DOI:10.1038/nrmicro842]
12. Bazylinski, D.A., Garratt‐Reed, A.J. and Frankel, R.B. 1994. Electron microscopic studies of magnetosomes in magnetotactic bacteria. - J. Electron. Microsc. Tech. 27: 389-401. [DOI:10.1002/jemt.1070270505]
13. Bazylinski, D.A. and Lefèvre, C.T. 2013. Magnetotactic bacteria from extreme environments. - Life. 3: 295-307. [DOI:10.3390/life3020295]
14. Bazylinski, D.A., Lefèvre, C.T. and Lower, B.H. 2014. Magnetotactic bacteria, magnetosomes, and nanotech- nology. Nanomicrobiology. - Springer, Berlin, pp: 39-74. [DOI:10.1007/978-1-4939-1667-2_3]
15. Bazylinski, D.A. and Schübbe, S. 2007. Controlled biomineralization by and applications of magnetotactic bacteria. - Adv. Appl. Microbiol. 62: 21-62. [DOI:10.1016/S0065-2164(07)62002-4]
16. Bazylinski, D.A. and Williams, T.J. 2006. Ecophysiology of magnetotactic bacteria. Magnetoreception and magnetosomes in bacteria. - Springer, Berlin, pp: 37-75. [DOI:10.1007/7171_038]
17. Bellini, S. 2009a. On a unique behavior of freshwater bacteria. - Chin. J. Oceanol. Limn. 27: 3-5. [DOI:10.1007/s00343-009-0003-5]
18. Bellini, S. 2009b. Further studies on magnetosensitive bacteria. - Chin. J. Oceanol. Limn. 27: 6-12. [DOI:10.1007/s00343-009-0006-2]
19. Benoit, M.R., Mayer, D., Barak, Y., Chen, I.Y., Hu, W., Cheng, Z., Wang, S.X., Spielman, D.M. Gambhir, S.S. and Matin, A. 2009. Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. - Clin. Cancer. Res. 15: 5170-5177. [DOI:10.1158/1078-0432.CCR-08-3206]
20. Cai, F., Li, J., Sun, J. and Ji, Y. 2011. Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1. - Chem. Eng. Sci. 175: 70-75. [DOI:10.1016/j.cej.2011.09.041]
21. Cameotra, S.S. and Dhanjal, S. 2010. Environmental nanotechnology: nanoparticles for bioremediation of toxic pollutants. Bioremediation Technology. - Springer, Berlin, pp: 348-374. [DOI:10.1007/978-90-481-3678-0_13]
22. Chen, C.Y., Chen, C.F., Yi, Y., Chen, L.J., Wu, L.F. and Song, T. 2014. Construction of a microrobot system using magnetotactic bacteria for the separation of Staphylococcus aureus. - Biomed. Microdevices 16: 761-770. [DOI:10.1007/s10544-014-9880-2]
23. Chen, C., Wang, P. and Li, L. 2016. Applications of bacterial magnetic nanoparticles in nanobiotechnology. - J. Nanosci. Nanotechnol. 16: 2164-2171. [DOI:10.1166/jnn.2016.10954]
24. Donnelly, J., Berry K. and Ulmer, J.B. 2003. Technical and regulatory hurdles for DNA vaccines. - Int. J. Parasitol. 33: 457-467. [DOI:10.1016/S0020-7519(03)00056-0]
25. Faivre, D., Böttger, L.H., Matzanke, B.F. and Schüler, D. 2007. Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane‐bound ferritin and an iron (II) species. - Angew. Chem 46: 8495-8499. [DOI:10.1002/anie.200700927]
26. Faivre, D. and Schuler, D. 2008. Magnetotactic bacteria and magnetosomes. - Chem. Rev 108: 4875-4898. [DOI:10.1021/cr078258w]
27. Fassbinder, J.W., Stanjek, H. and Vali, H. 1990. Occurrence of magnetic bacteria in soil. - Nature. 34: 161-163. [DOI:10.1038/343161a0]
28. Felfoul, O., Mohammadi, M., Gaboury, L. and Martel, S. 2011. Tumor targeting by computer controlled guidance of magnetotactic bacteria acting like autonomous microrobots. IEEE/RSJ International Conference on Intelligent Robots and Systems, 25-30 Sept., San Francisco, CA, USA. [DOI:10.1109/IROS.2011.6094991]
29. Flies, C.B., Peplies, J. and Schüler, D. 2005. Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. - Appl. Environ. Microbiol. 71: 2723-2731. [DOI:10.1128/AEM.71.5.2723-2731.2005]
30. Frankel, R.B. and Bazylinski, D.A. 1995. Structure and Function of Magnetosomes in Magnetotactic Bateria.
31. Ginet, N., Pardoux, R., Adryanczyk, G., Garcia, D., Brutesco, C. and Pignol, D. 2011. Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. - PLOS. ONE 6: e21442. [DOI:10.1371/journal.pone.0021442]
32. Gorby, Y.A., Beveridge, T.J. and Blakemore, R.P. 1988. Characterization of the bacterial magnetosome membrane. - J. Bacteriol. 170: 834-841. [DOI:10.1128/JB.170.2.834-841.1988]
33. Han, L., Li, S.Y., Yang, Y., Zhao, F.M., Huang, J., & Chang, J. 2008. Research on the structure and performance of bacterial magnetic nanoparticles. - J. Biomater. Appl. 22: 433-448. [DOI:10.1177/0885328207079064]
34. Han, L., Li, S., Yang, Y., Zhao, F., Huang, J., & Chang, J. 2007. Comparison of magnetite nanocrystal formed by biomineralization and chemosynthesis. - J. Magn. Magn. Mater. 313: 236-242. [DOI:10.1016/j.jmmm.2007.01.004]
35. Hergt, R., Dutz, S., Müller, R. and Zeisberger, M. 2006. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. - J. Phys. Condens. Matter 18: S2919. [DOI:10.1088/0953-8984/18/38/S26]
36. Honda, T., Tanaka, T., & Yoshino, T. 2015. Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis. - Biomacromolecules. 16: 3863-3868. [DOI:10.1021/acs.biomac.5b01174]
37. Hu, J., Chen, G., & Lo, I.M. 2006. Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. - J. Environ. Eng. 132: 709-715. [DOI:10.1061/(ASCE)0733-9372(2006)132:7(709)]
38. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. 2012. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. - J. Hazard. Mater. 211: 317-331. [DOI:10.1016/j.jhazmat.2011.10.016]
39. Jandacka, P., Alexa, P., Pistora, J., Li, J., Vojtkova, H., & Hendrych, A. 2013. Size distributions of nanoparticles from magnetotactic bacteria as signatures of biologically controlled mineralization. - Am. Mineral. 98: 2105-2114. [DOI:10.2138/am.2013.4429]
40. Jogler, C. and Schüler, D. 2006. Genetic analysis of magnetosome biomineralization. Magnetoreception and magnetosomes in bacteria. - Springer, Berlin, pp: 133-161. [DOI:10.1007/7171_041]
41. Jogler, C. and Schüler, D. 2009. Genomics, genetics, and cell biology of magnetosome formation. - Annu. Rev. Microbiol. 63: 501-521. [DOI:10.1146/annurev.micro.62.081307.162908]
42. Khalil, I.S., Pichel, M.P., Zondervan, L., Abelmann, L., and Misra, S. 2013. Characterization and control of biological microrobots. In Experimental robotics. - Springer, Berlin, pp: 617-631. [DOI:10.1007/978-3-319-00065-7_42]
43. Kingsley, J.D., Dou, H., Morehead, J., Rabinow, B., Gendelman, H.E. and Destache, C.J. 2006. Nanotechnology: a focus on nanoparticles as a drug delivery system. - J. Neuroimmune. Pharmacol. 1: 340-350. [DOI:10.1007/s11481-006-9032-4]
44. Kolinko, S., Jogler, C., Katzmann, E., Wanner, G., Peplies, J. and Schüler, D. 2012. Single‐cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. - Environ. Microbiol. 14: 1709-1721. [DOI:10.1111/j.1462-2920.2011.02609.x]
45. Komeili, A., Li, Z., Newman, D.K. and Jensen, G.J. 2006. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. - Science 311: 242-245. [DOI:10.1126/science.1123231]
46. Komeili, A., Vali, H., Beveridge, T.J. and Newman, D.K. 2004. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. - Proc. Natl. Acad. Sci. U.S.A 101: 3839-3844. [DOI:10.1073/pnas.0400391101]
47. Lefevre, C.T., Abreu, F., Lins, U. and Bazylinski, D.A. 2011. A bacterial backbone: magnetosomes in magnetotactic bacteria. Metal nanoparticles in microbiology. - Springer, Berlin, pp: 75-102. [DOI:10.1007/978-3-642-18312-6_4]
48. Lefèvre, C.T. and Bazylinski, D.A. 2013. Ecology, diversity, and evolution of magnetotactic bacteria. - Microbiol. Mol. Biol. Rev. 77: 497-526. [DOI:10.1128/MMBR.00021-13]
49. Lin, W., Wang, Y., Gorby, Y., Nealson, K. and Pan, Y. 2013. Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria. - Sci. Rep. 3: 1643. [DOI:10.1038/srep01643]
50. Lin, W., Wang, Y., Li, B. and Pan, Y. 2012. A biogeographic distribution of magnetotactic bacteria influenced by salinity. - ISME. J. 6: 475-479. [DOI:10.1038/ismej.2011.112]
51. Lins, U., Keim, C.N., Evans, F.F., Farina, M., and Buseck, P.R. 2007. Magnetite (Fe 3 O 4) and greigite (Fe 3 S 4) crystals in multicellular magnetotactic prokaryotes. - Geomicrobiol. J. 24: 43-50. [DOI:10.1080/01490450601134317]
52. Lins, U., McCartney, M.R., Farina, M., Frankel, R.B. and Buseck, P.R. 2006. Crystal habits and magnetic microstructures of magnetosomes in coccoid magnetotactic bacteria. - An. Acad. Bras. Cienc. 78: 463-474. [DOI:10.1590/S0001-37652006000300007]
53. Lower, B.H. and Bazylinski, D.A. 2013. The bacterial magnetosome: a unique prokaryotic organelle. - J. Mol. Microbiol. Biotechnol. 23: 63-80. [DOI:10.1159/000346543]
54. Lu, A. H., Salabas, E.E., & Schüth, F. 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. - Angew. Chem. Int. Ed. 46: 1222-1244. [DOI:10.1002/anie.200602866]
55. Ma, Q., Chen, C., Wei, S., Chen, C., Wu, L.F. and Song, T. 2012. Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip. - Biomicrofluidics. 6: 024107. [DOI:10.1063/1.3702444]
56. Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., and Mukherjee, P. 2006. The use of microorganisms for the formation of metal nanoparticles and their application. - Appl. Microbiol. Biotechnol. 69: 485-492. [DOI:10.1007/s00253-005-0179-3]
57. Martel, S. 2012. Bacterial microsystems and microrobots. - Biomed Microdevices. 14: 1033-1045. [DOI:10.1007/s10544-012-9696-x]
58. Masood, F. and Malik, A. 2013. Current aspects of metal resistant bacteria in bioremediation: from genes to ecosystem. management of microbial resources in the environment. - Springer, Berlin, pp: 289-311. [DOI:10.1007/978-94-007-5931-2_11]
59. Mathuriya, A.S. 2015. Magnetotactic bacteria for cancer therapy. - Biotechnol. Lett. 37: 491-498. [DOI:10.1007/s10529-014-1728-6]
60. Mathuriya, A.S. 2016. Magnetotactic bacteria: nanodrivers of the future. - Crit. Rev. Biotechnol. 36: 788-802. [DOI:10.3109/07388551.2015.1046810]
61. Matsunaga, T., Hashimoto, K., Nakamura, N., Nakamura, K. and Hashimoto, S. 1989. Phagocytosis of bacterial magnetite by leucocytes. - Appl. Microbiol. Biotechnol. 31: 401-405. [DOI:10.1007/BF00257612]
62. McCartney, M.R., Ulysses, L., Farina, M., Buseck, P.R. and Frankel, R.B. 2001. Magnetic microstructure of bacterial magnetite by electron holography. - EUR. J. Mineral 13: 685-689. [DOI:10.1127/0935-1221/2001/0013-0685]
63. Mody, V.V., Cox, A., Shah, S., Singh, A., Bevins, W. and Parihar, H. 2014. Magnetic nanoparticle drug delivery systems for targeting tumor. - Appl. Nanosci. 4: 385-392. [DOI:10.1007/s13204-013-0216-y]
64. Mokrani, N., Felfoul, O., Zarreh, F.A., Mohammadi, M., Aloyz, R., Batist, G. and Martel, S. 2010. Magnetotactic bacteria penetration into multicellular tumor spheroids for targeted therapy. Annual International Conference of the IEEE Engineering in Medicine and Biology Societ, 31 Aug.-4 Sep., Buenos Aires, Argentina. [DOI:10.1109/IEMBS.2010.5627105]
65. Moskowitz, B.M., Bazylinski, D.A., Egli, R., Frankel, R.B. and Edwards, K.J. 2008. Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond. - Geophys. J. Int. 174: 75-92. [DOI:10.1111/j.1365-246X.2008.03789.x]
66. Murat, D., Quinlan, A., Vali, H. and Komeili, A. 2010. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. - Proc. Natl. Acad. Sci. U.S.A. 107: 5593-5598. [DOI:10.1073/pnas.0914439107]
67. Musarrat, J., Dwivedi, S., Singh, B.R., Saquib, Q. and Al-Khedhairy, A.A. 2011. Microbially synthesized nanoparticles: scope and applications. - Microbes and Microbial Technology, Springer, Berlin, pp: 101-126. [DOI:10.1007/978-1-4419-7931-5_5]
68. Nicolas, J.F. and Guy, B. 2008. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. - Expert. Rev. Vaccines. 7: 1201-1214. [DOI:10.1586/14760584.7.8.1201]
69. Park, S.J., Park, S.H., Cho, S., Kim, D.M., Lee, Y., Ko, S.Y., Hong, Y., Choy, H.E., Min, J.J. and Park, J.O. 2013. New paradigm for tumor theranostic methodology using bacteria-based microrobot. - Sci. Rep. 3: 3394. [DOI:10.1038/srep03394]
70. Posfai, M., Buseck, P.R., Bazylinski, D.A. and Franke, R.B. 1998. Iron sulfides from magnetotactic bacteria: structure, composition, and phase transitions. - Am. Mineral 83: 1469-1481. [DOI:10.2138/am-1998-11-1235]
71. Postec, A., Tapia, N., Bernadac, A., Joseph, M., Davidson, S., Wu, L.F., Ollivier, B. and Pradel, N. 2012. Magnetotactic bacteria in microcosms originating from the French Mediterranean coast subjected to oil industry activities. - Microb. Ecol. 63: 1-11. [DOI:10.1007/s00248-011-9910-z]
72. Prozorov, T., Bazylinski, D.A., Mallapragada, S.K. and Prozorov, R. 2013. Novel magnetic nanomaterials inspired by magnetotactic bacteria: Topical review. - Mater. Sci. Eng. R. Rep. 74: 133-172. [DOI:10.1016/j.mser.2013.04.002]
73. Ramanujan, R.V. 2009. Magnetic particles for biomedical applications. Biomedical materials. - Springer, Berlin, pp: 477-491. [DOI:10.1007/978-0-387-84872-3_17]
74. Richter, M., Kube, M., Bazylinski, D.A., Lombardot, T., Glöckner, F.O., Reinhardt, R. and Schüler, D. 2007. Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. - J. Bacteriol. 189: 4899-4910. [DOI:10.1128/JB.00119-07]
75. Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E. and Thompson, F. 2013. The prokaryotes: prokaryotic Physiology and biochemistry. - Springer Berlin, 662 pp. [DOI:10.1007/978-3-642-30144-5]
76. Salata, O.V. 2004. Applications of nanoparticles in biology and medicine. - J. nanobiotechnology. 2: 3. [DOI:10.1186/1477-3155-2-3]
77. Schüler, D. 1999. Formation of magnetosomes in magnetotac- tic bacteria. - J. Mol. Microbiol. Biotechnol. 1: 79-86.
78. Schüler, D. 2002. The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. - Int. Microbiol. 5: 209-214. [DOI:10.1007/s10123-002-0086-8]
79. Schüler, D. and Frankel, R.B. 1999. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. - Appl. Microbiol. Biotechnol. 52: 464-473. [DOI:10.1007/s002530051547]
80. Sharma, M., Hasija, V., Naresh, M. and Mittal, A. 2008. Functional control by codon bias in magnetic bacteria. - J. Biomed. Nanotech. 4: 44-51.
81. Sharma, M., Naresh, M. and Mittal, A. 2007. Morphological changes in magnetotactic bacteria in presence of magnetic fields. - J. Biomed. Nanotech. 3: 75-80. [DOI:10.1166/jbn.2007.006]
82. Simmons, S.L. and Edwards, K.J. 2006. Geobiology of magnetotactic bacteria. Magnetoreception and magnetosomes in bacteria. - Springer, Berlin, pp: 77-102. [DOI:10.1007/7171_039]
83. Simmons, S.L., Sievert, S.M., Frankel, R.B., Bazylinski, D.A. and Edwards, K.J. 2004. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. - Appl. Environ. Microbiol. 70: 6230-6239. [DOI:10.1128/AEM.70.10.6230-6239.2004]
84. Sinha, R., Kim, G.J., Nie, S. and Shin, D.M. 2006. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. - Mol. Cancer. Ther. 5: 1909-1917. [DOI:10.1158/1535-7163.MCT-06-0141]
85. Sun, J.B., Duan, J.H., Dai, S.L., Ren, J., Guo, L., Jiang, W. and Li, Y. 2008. Preparation and anti‐tumor efficiency evaluation of doxorubicin‐loaded bacterial magnetosomes: Magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. - Biotechnol. Bioeng. 101: 1313-1320. [DOI:10.1002/bit.22011]
86. Suri, S.S., Fenniri, H. and Singh, B. 2007. Nanotechnology-based drug delivery systems. - J. Occup. Med. Toxicol. 2: 16. [DOI:10.1186/1745-6673-2-16]
87. Takamura, T., Tashiro, T., Arakaki, A. and Sandhu, A. 2014. Functionalization of Magnetotactic Bacteria for Micror- obotic Applications. - IEEE Trans. Magn. 50: 1-4. [DOI:10.1109/TMAG.2014.2330607]
88. Tang, Y., Wang, D., Zhou, C., Ma, W., Zhang, Y., Liu, B. and Zhang, S. 2012. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. - Gene. Ther. 19: 1187-1195. [DOI:10.1038/gt.2011.197]
89. Trahms, L. 2009. Biomedical applications of magnetic nanoparticles. Colloidal Magnetic Fluids. - Springer, Berlin, pp: 1-32. [DOI:10.1007/978-3-540-85387-9_5]
90. Uebe, R. and Schüler, D. 2016. Magnetosome biogenesis in magnetotactic bacteria. - Nat. Rev. Microbiol 14: 621-637. [DOI:10.1038/nrmicro.2016.99]
91. Vargas, G., Cypriano, J., Correa, T., Leão, P., Bazylinski, D., and Abreu, F. 2018. Applications of Magnetotactic Bacteria, Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. - Molecules. 23: 2438. [DOI:10.3390/molecules23102438]
92. Xiang, L., Wei, J., Jianbo, S., Guili, W., Feng, G. and Ying, L. 2007. Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR‐1 were not toxic to mouse fibroblasts in vitro. - Lett. Appl. Microbiol. 45: 75-81. [DOI:10.1111/j.1472-765X.2007.02143.x]
93. Yan, L., Zhang, S., Chen, P., Liu, H., Yin, H. and Li, H. 2012. Magnetotactic bacteria, magnetosomes and their application. - Microbiol. Res. 167: 507-519. [DOI:10.1016/j.micres.2012.04.002]
94. Zhang, W.Y., Zhou, K., Pan, H.M., Du, H.J., Chen, Y.R., Zhang, R., Ye, W., Lu, C., Xiao, T. and Wu, L.F. 2013. Novel rod-shaped magnetotactic bacteria belonging to the class Alphaproteobacteria. - Appl. Environ. Microbiol. 79: 3137-3140. [DOI:10.1128/AEM.03869-12]
95. Zhang, W.Y., Zhou, K., Pan, H.M., Yue, H.D., Jiang, M., Xiao, T. and Wu, L.F. 2012. Two genera of magnetococci with bean-like morphology from intertidal sediments of the Yellow Sea, China. - Appl. Environ. Microbiol. 78: 5606-5611. [DOI:10.1128/AEM.00081-12]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb