Volume 6, Issue 4 (1-2020)                   nbr 2020, 6(4): 435-445 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zadeh-Hosseingholi E, Chaparzadeh N, Mahmudi Aghdam S. Isolation and characterization of plant growth-promoting bacteria from Syrian bean caper (Zygophyllum fabago) rhizosphere . nbr 2020; 6 (4) :435-445
URL: http://nbr.khu.ac.ir/article-1-3046-en.html
Azarbaijan Shahid Madani University , nchapar@azaruniv.ac.ir
Abstract:   (4551 Views)
Some rhizobacteria have positive effects on plants growth. Syrian bean-caper (Zygophyllum fabago) is a weed plant with medicinal value. This study was conducted to isolate and identify bacteria from Syrian bean-caper rhizosphere. Characteristics associated with plant growth stimulation, such as phosphate and zinc dissolution, production of Indole acetic acid and antifungal activity, were investigated. The isolates were separately inoculated to the plant and after plant root establishment was ensured, their effectiveness in increasing plant growth in greenhouse conditions was measured. Biochemical and molecular identification results showed that five isolates belonged to the genera Bacillus, Pseudomonas, Pantoea, and Brevibacterium. All five isolates showed some degree of plant growth promotion capabilities. Among the isolates, only the genus Bacillus increased the dry weights of plants significantly. The amount of phosphate solubilization for this isolate was 440 μg ml-1 and its acid production in the culture medium was higher than that in other isolates. The isolate had zinc solubilisation capability and produced 3.89 mg ml-1 indole acetic acid. However, this isolate did not show antifungal activity against two fungal pathogens of Aspergillus niger and Botrytis cinerea.  
 
 
 
Full-Text [PDF 956 kb]   (1540 Downloads)    
Type of Study: Original Article | Subject: Microbiology
Received: 2018/01/2 | Revised: 2020/02/24 | Accepted: 2019/11/4 | Published: 2020/01/8 | ePublished: 2020/01/8

References
1. Abdel-Hamid, R., Abilov, Z., Sultanova, N., Saitjanova, S. and Gemedzhieva, N. 2013. Preliminary phytochemical screening of Zygophyllum fabago. - Int. J. Biol. Chem. 6: 60-4.
2. Afzal, I., Shinwari, Z. and Iqrar, I. 2015. Selective isolation and characterization of agriculturally beneficial endophytic bacteria from wild hemp using canola. - Pak. J. Bot. 47: 1999-2008.
3. Ahmad, F., Ahmad, I. and Khan, M. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. - Microbiol. Res. 163: 173-181. [DOI:10.1016/j.micres.2006.04.001]
4. Antoun, H. 2013. Brenner's encyclopedia of genetics. - Elseivier, New York, 4368 pp.
5. Ashrafuzzaman, M., Hossen, F., Ismail, M., Hoque, A., Islam, M., Shahidullah, S. and Meon, S. 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. - Afr. J. Biotechnol. 8: 1247-1252.
6. Bartholomew, J. and Mittwer, T. 1950. A simplified bacterial spore stain. - Stain Technol. 25: 153-156. [DOI:10.3109/10520295009110979]
7. Bhattacharyya, P. and Jha, D. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. - World J. Microbiol. Biotechnol. 28: 1327-1350. [DOI:10.1007/s11274-011-0979-9]
8. Cherif-Silini, H., Silini, A., Yahiaoui, B., Ouzari, I. and Boudabous, A. 2016. Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. - Ann. Microbiol. 66: 1087-1097. [DOI:10.1007/s13213-016-1194-6]
9. Chernin, L., Ismailov, Z., Haran, S. and Chet, I. 1995. Chitinolytic enterobacter agglomerans antagonistic to fungal plant pathogens. - Appl. Environ. Microbiol. 61: 1720-1726. [DOI:10.1128/AEM.61.5.1720-1726.1995]
10. Dastager, S., Deepa, C. and Pandey, A. 2010. Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea. - Plant Physiol. Biochem. 48: 987-992. [DOI:10.1016/j.plaphy.2010.09.006]
11. Dawwam, G., Elbeltagy, A, Emara, H., Abbas, I. and Hassan, M. 2013. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. - Ann. Agric. Sci. 58: 195-201. [DOI:10.1016/j.aoas.2013.07.007]
12. Dobbelaere, S., Vanderleyden, J. and Okon, Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. - Crit. Rev. Plant Sci. 22: 107-149. [DOI:10.1080/713610853]
13. Dworkin, M., and Foster, J. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. - J. Bacteriol. 75: 592-603. [DOI:10.1128/JB.75.5.592-603.1958]
14. Egamberdieva, D. 2010. Growth response of wheat cultivars to bacterial inoculation in calcareous soil. - Plant Soil Environ. 56: 570-573. [DOI:10.17221/75/2010-PSE]
15. Faller, A., and Schleifer, K. 1981. Modified oxidase and benzidine tests for separation of staphylococci from micrococci. - J. Clin. Microbiol. 13: 1031-1035. [DOI:10.1128/JCM.13.6.1031-1035.1981]
16. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. - Evolution 39: 783-791. [DOI:10.1111/j.1558-5646.1985.tb00420.x]
17. Frank, J., Reich, C., Sharma, S., Weisbaum, J., Wilson, B., and Olsen, G. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. - Appl. Environ. Microbiol. 74: 2461-2470. [DOI:10.1128/AEM.02272-07]
18. Gordon, S., Weber, R. 1951. Colorimetric estimation of indoleacetic acid. - Plant Physiol. 26: 192-195. [DOI:10.1104/pp.26.1.192]
19. Gusain, Y., Kamal, R., Mehta, C., Singh, U. and Sharma, A. 2015. Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. - J. Environ. Biol. 36: 301.
20. Hafeez, F., Yasmin, S., Ariani, D., Zafar, Y. and Malik, K. 2006. Plant growth-promoting bacteria as biofertilizer. - Agron. Sustain. Dev. 26: 143-150. [DOI:10.1051/agro:2006007]
21. Hopkins, W. and Huner, N. 2012. Introduction to plant physiology. - APS press, Minnesota, 528 pp.
22. Khan, M., Zaidi, A., and Wani, P. 2009. Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. - Agron Sustain Dev. 27: 29-43. [DOI:10.1051/agro:2006011]
23. Khan, S., Khan, A., Khan, A., Wadood, A., Farooq, U., Ahmed, A., Ahmed V. U., Sener, B. and Erdemoglu, N. 2014. Urease inhibitory activity of ursane type sulfated saponins from the aerial parts of Zygophyllum fabago Linn. - Phytomedicine 21: 379-382. [DOI:10.1016/j.phymed.2013.09.009]
24. Kim, Y., Kotnala, B., Kim, Y. and Jeon, Y. 2016. Biological characteristics of Paenibacillus polymyxa GBR-1 involved in root rot of stored Korean ginseng. - J. Ginseng. Res. 40: 453-461. [DOI:10.1016/j.jgr.2015.09.003]
25. Luna, M., Galar, M., Aprea, J., Molinari, M. and Boiardi, J. 2010. Colonization of sorghum and wheat by seed inoculation with Gluconacetobacter diazotrophicus. - Biotechnol. Lett.. 32:1071-1076. [DOI:10.1007/s10529-010-0256-2]
26. Majeed, A., Abbasi, M., Hameed, S., Imran, A. and Rahim, N. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. - Front. Microbiol. 6: 198. [DOI:10.3389/fmicb.2015.00198]
27. Malboobi, M., Owlia, P., Behbahani, M., Sarokhani, E., Moradi, S., Yakhchali, B., Deljou, A., Morabbi Heravi, K., 2009. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. - World J. Microbiol. Biotechnol. 25: 1471-1477. [DOI:10.1007/s11274-009-0037-z]
28. Mishra, A., Chauhan, P., Chaudhry, V., Tripathi, M. and Nautiyal, C. 2011. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. - Anton. Leeuw. Int. J.G. 100: 405-413. [DOI:10.1007/s10482-011-9596-8]
29. Mufti, R., Amna Rafique, M., Haq, F., Hussain, M., Munis, M. F. H., Masood, S, Mumtaz A. S and Javed Chaudhary, H. 2015. Genetic diversity and metal resistance assessment of endophytes isolated from Oxalis corniculata. - Soil Environ. 34: 89-99.
30. Mumtaz, M., Ahmad, M., Jamil, M. and Hussain, T. 2017. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. - Microbiol. Res. 202: 51-60. [DOI:10.1016/j.micres.2017.06.001]
31. Munimbazi, C., and Bullerman, L. 1998. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. - J. Appl. Microbiol. 84: 959-968. [DOI:10.1046/j.1365-2672.1998.00431.x]
32. Nicoara, A., Neagoe, A., Stancu, P., de Giudici, G., Langella, F., Sprocati, A. R., Iordache, V. and Kothe, E. 2014. Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation. - Environ. Sci. Pollut Res. 21: 6905-6920. [DOI:10.1007/s11356-013-2489-9]
33. Pikovskaya, R., 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. - Mikrobiologiya 17: 362-370.
34. Pirhadi, M., Enayatizamir, N., Motamedi, H. and Sorkheh, K. 2016. Screening of salt tolerant sugarcane endophytic bacteria with potassium and zinc for their solubilizing and antifungal activity. - Biosc. Biotech. Res. 9: 530-538. [DOI:10.21786/bbrc/9.3/28]
35. Queipo-Ortuo, M., Colmenero, J., Macias, M., Bravo, M. and Morata, P. 2008. Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. - Clin. Vaccine Immunol. 15: 293-296. [DOI:10.1128/CVI.00270-07]
36. Raza, F., Amin, A. and Faisal, M. 2015. Desiccation-tolerant rhizobacteria from Cholistan desert, Pakistan, and their impact on Zea mays L. - Pol. J. Environ. 24: 1173-1181. [DOI:10.15244/pjoes/26386]
37. Satomi, M., La Duc, M. and Venkateswaran, K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. - Int. J. Syst. Evol. Microbiol. 56: 1735-1740. [DOI:10.1099/ijs.0.64189-0]
38. Sharma, S., Sharma, M., Ramesh, A. and Joshi, O. 2012. Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. - J. Microbiol. Biotech. 22: 352-359. [DOI:10.4014/jmb.1106.05063]
39. Shrestha, A., Kim, B. and Park, D. 2014. Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. - Biocontrol Sci. Technol. 24: 763-779. [DOI:10.1080/09583157.2014.894495]
40. Simons, M., Van Der Bij, A., Brand, I., De Weger, L., Wijffelman, C. and Lugtenberg, B. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. - Mol. Plant Microbe Interact. 9: 600-607. [DOI:10.1094/MPMI-9-0600]
41. Son, H., Park, G., Cha, M. and Heo, M. 2006. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. - Bioresour. Technol. 97: 204-210. [DOI:10.1016/j.biortech.2005.02.021]
42. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods - Mol. Biol. Evol. 28: 2731-2739. [DOI:10.1093/molbev/msr121]
43. Taylor, W., Achanzar, D. 1972. Catalase test as an aid to the identification of Enterobacteriaceae. - Appl. Microbiol. 24: 58-61 [DOI:10.1128/AEM.24.1.58-61.1972]
44. Trotel-Aziz, P., Couderchet, M., Biagianti, S., and Aziz, A. 2008. Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. - Environ. Exp. Bot. 64: 21-32. [DOI:10.1016/j.envexpbot.2007.12.009]
45. Turan, M., Ekinci, M., Yildirim, E., GNE, A., Karaguz, K., Kotan, R., and Dursun, A. 2014. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. - Turk. J. Agric. For. 38: 327-333. [DOI:10.3906/tar-1308-62]
46. Twedt, R., Spaulding, P., and Hall, H. 1969. Morphological, cultural, biochemical, and serological comparison of Japanese strains of Vibrio parahemolyticus with related cultures isolated in the United States. - J. Bacteriol. 98: 511-518. [DOI:10.1128/JB.98.2.511-518.1969]
47. Verma, P., Yadav, A., Kazy, S., Saxena, A. and Suman, A. 2014. Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. - Int. J. Curr. Microbiol. App. Sci. 3: 432-447.
48. Xu, J. 2014. Isolation and assessment of nitrogen-fixing and phosphate-solubilizing bacteria for use as biofertilizers. - Auburn University, Auburn, 145 pp.
49. Yoon, S., Ha, S., Kwon, S., Lim, J., Kim, Y. Seo, H. and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. - Int. J. Syst. Evol. Microbiol. 67: 1613-1617. [DOI:10.1099/ijsem.0.001755]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb