Volume 8, Issue 3 (10-2021)                   nbr 2021, 8(3): 195-205 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soosani N, Ashengroph M. Extracellular green synthesis of zinc oxide nanoparticle by using the cell-free extract Rhodotorula pacifica NS02 and investigation of their antimicrobial activities. nbr 2021; 8 (3) :195-205
URL: http://nbr.khu.ac.ir/article-1-3459-en.html
University of Kurdistan, Faculty of Science, Department of Biological Science, Sanandaj, Iran , m.ashengroph@uok.ac.ir
Abstract:   (3595 Views)
The biosynthesis of nanoparticles (NPs) has been proposed due to its fast, clean, safe, and cost-effective production and being efficient alternative to conventional physicochemical methods. This study aimed to isolate and identify aquatic yeast strains for their potential to form Zinc oxide nanoparticles (ZnONPs). A yeast strain, NS02, with high tolerance against zinc ion (5.25 mM) was isolated using the enrichment technique and was selected as efficient candidate for the biosynthesis of ZnONPs under cell-free extract (CFE) strategy. The preliminary evaluation on the formation of ZnONPs was performed by visual observation and UV-visible absorption spectra of the biosynthesized ZnONPs. The morphology, size and elemental distribution of the nanoparticles were determined by Field emission scanning electron microscopy (FESEM) equipped with energy-dispersive X-ray (EDX). X-ray diffractometer (XRD) was used to identify the crystalline phase of the ZnONPs. Antibacterial activity of ZnONPs against pathogenic bacteria isolated from the clinical specimens was investigated using agar well diffusion method. The isolate NS02 was characterized based on their morphological properties and amplification the ITS-5.8S-ITS2 rDNA regions. The present study pioneered the capabilities of the native aquatic strain Rhodotorula pacifica for the extracellular synthesis of ZnONPs with CFE strategy. The biosynthesized ZnONPs had a growth inhibitory effect all tested clinical isolates due to their nanometric size and well-defined dispersity. This investigation is attempted to indicate the novel microbial sources of aquatic yeasts as biological plant in the synthesis of ZnONPs with antimicrobial activity under cell-free extract strategy.
 

Full-Text [PDF 505 kb]   (997 Downloads)    
Type of Study: Original Article | Subject: Biotechnology
Received: 2021/03/29 | Revised: 2021/10/19 | Accepted: 2021/07/5 | Published: 2021/10/19 | ePublished: 2021/10/19

References
1. Abdolmaleki, S., Ghadermazi, M., Ashengroph, M., Saffari, A. & Moradi Sabzkohi, S. 2018. Cobalt (II), Zirconium (IV), Calcium (II) complexes with dipicolinic acid and imidazole derivatives: X-ray studies, thermal analyses, evaluation as in vitro antibacterial and cytotoxic agents. Inorganica Chimica Acta. 480: 70 - 82. [DOI:10.1016/j.ica.2018.04.047]
2. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H. & Momenbeik, F. 2011. Candida galli Strain PGO6: A novel isolated yeast strain capable of transformation of isoeugenol into vanillin and vanillic Acid. Current Microbiology. 62: 990-998. [DOI:10.1007/s00284-010-9815-y]
3. Ashengroph, M. 2013. Isolation and characterization of a native strain of Aspergillus niger ZRS14 with capability of high resistance to zinc and its supernatant application towards extracellular synthesis of zinc oxide nanoparticles. Biological Journal of Microorganisms. 2(7): 29-44.
4. Ashengroph, M. 2014. Fast and extracellular synthesis of zinc oxide nanocrystals using the novel isolated yeast strain Candida sp. MY2. Cellular and Molecular Researches. 27(2): 155-166.
5. Ashengroph, M., Khaledi, A. & Bolbanabad, E.M. 2020. Extracellular biosynthesis of cadmium sulphide quantum dot using cell-free extract of Pseudomonas chlororaphis CHR05 and its antibacterial activity. Process Biochemistry. 89: 63-70. [DOI:10.1016/j.procbio.2019.10.028]
6. Ashengroph, M. & Hosseini, SR. 2021. A newly isolated Bacillus amyloliquefaciens SRB04 for the synthesis of selenium nanoparticles with potential antibacterial properties. International Microbiology. 24: 103-114. [DOI:10.1007/s10123-020-00147-9]
7. Baskar, G., Chandhuru, J., Fahad, K.S. & Praveen, A.S. 2013. Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian Journal of Pharmaceutical Technology. 3: 142-146.
8. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M. & Rizzolio, F. 2019. The History of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 25(1): 112. [DOI:10.3390/molecules25010112]
9. Bolbanabad, E. M., Ashengroph, M. & Darvishi, F. 2020. Development and evaluation of different strategies for the clean synthesis of silver nanoparticles using Yarrowia lipolytica and their antibacterial activity. Process Biochemistry. 94: 319-328. [DOI:10.1016/j.procbio.2020.03.024]
10. Ding, X., Lin, K., Li, Y., Dang, M. & Jiang, L. 2020. Synthesis of biocompatible zinc oxide (ZnO) nanoparticles and their neuroprotective effect of 6-OHDA induced neural damage in SH-SY 5Y cells. Journal of Cluster Science. 31: 1315-1328. [DOI:10.1007/s10876-019-01741-2]
11. DurÁn, N., Marcato, P.D., Ingle, A., Gade, A. & Rai, M. 2010. Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications. In: Rai M., Kövics G. (eds) progress in mycology. Springer, Dordrecht. [DOI:10.1007/978-90-481-3713-8_16]
12. Gahlawat, G. & Choudhury, A.R. 2019. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances. 23: 12944-12967. [DOI:10.1039/C8RA10483B]
13. Jiang, J., Pi, J. & Cai, J. 2018. The Advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications. 2018: 1062562. [DOI:10.1155/2018/1062562]
14. Kołodziejczak-Radzimska, A. & Jesionowski. T. 2014. Zinc oxide-from synthesis to application: a review. Materials (Basel). 7(4): 2833-2881. [DOI:10.3390/ma7042833]
15. Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33: 1870- 1874. [DOI:10.1093/molbev/msw054]
16. Kurtzman, C.P. & Fell, J.W. 2000. The yeasts: a taxonomic study (4th revised and enlarged edition). Elsevier, Amsterdam, pp 1-525.
17. Lim, Z.H., Chia, Z.X., Kevin, M., Wong, A.S. & Ho, G.W. 2010. A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Sensors and Actuators B: Chemical. 151: 121-126. [DOI:10.1016/j.snb.2010.09.037]
18. Mahamuni, P.P., Patil, P.M., Dhanavade, M.J., Badiger, M.V., Shadija, P.G., Lokhande, A.C. & Bohara, R.A. 2019. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochemistry and Biophysics Reports. 17: 71-80. [DOI:10.1016/j.bbrep.2018.11.007]
19. Moghaddam, A.B., Moniri, M., Azizi, S., Rahim, R.A., Ariff, A.B., Saad, W.Z., Namvar, F. & Navaderi, M. 2017. Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules. 22: 872-890. [DOI:10.3390/molecules22060872]
20. Mohd Yusof, H., Mohamad, R., Zaidan, U.H. & Rahman, N.A.A. 2019. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology. 10: 57. [DOI:10.1186/s40104-019-0368-z]
21. Rajabairavi, N., Raju, C.S., Karthikeyan, C., Varutharaju, K., Nethaji, S., Hameed, A.S.H. &
22. Shajahan, A. 2017. Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum. Springer Proceedings in Physics. 189: 245-254. [DOI:10.1007/978-3-319-44890-9_23]
23. Rajan, A., Cherian, E. & Baskar, G. 2016. Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. International Journal of Modern Science and Technology. 1: 52-7.
24. Rajeshkumar, S. & Sivapriya, D. 2020. Fungus-mediated nanoparticles: characterization and biomedical advances. In: Shukla A. (eds) nanoparticles in medicine. Springer, Singapore. [DOI:10.1007/978-981-13-8954-2_7]
25. Rauf, M.A., Owais, M., Rajpoot, R., Ahmad, F., Khan, N. & Zubair, S. 2017. Biomimetically
26. synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible: S. aureus skin infection in experimental animals, RSC Advances. 7: 36361-36373. [DOI:10.1039/C7RA05040B]
27. Saravanan, M., Gopinath, V., Chaurasia, M.K., Syed, A., Ameen, F., Purushothaman, N. 2018. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microbial Pathogenesis. 115: 57-63. [DOI:10.1016/j.micpath.2017.12.039]
28. Sarkar, J., Ghosh, M., Mukherjee, A., Chattopadhyay, D. & Acharya, K. 2014. Biosynthesis and safety evaluation of ZnO nanoparticles. Bioprocess and Biosystems Engineering. 37: 165-171. [DOI:10.1007/s00449-013-0982-7]
29. Selvarajan, E. & Mohanasrinivasan, V. 2013. Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07, Materials Letters. 112: 180-182. [DOI:10.1016/j.matlet.2013.09.020]
30. Shamsuzzaman, M.A., Khanam, H. & Aljawfi, R.N. 2017. Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arabian Journal of Chemistry. 10: 1530-1536. [DOI:10.1016/j.arabjc.2013.05.004]
31. Singh, B.N., Rawat, A.K.S., Khan, W., Naqvi, A.H. & Singh, B.R. 2014. Biosynthesis of stable
32. antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids. PLoS One. 4: 9.
33. Usman, M.S., El Zowalaty, M.E., Shameli, K., Zainuddin, N., Salama, M. & Ibrahim, N.A.
34. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. International journal of nanomedicine. 8: 4467.
35. Velmurugan, P., Shim, J., You, Y., Choi, S., Kamala-Kannan, S., Lee, K.J., Kim, H.J. & Oh, B.T. 2010. Removal of zinc by live, dead, and dried biomass of Fusarium spp. Isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals. Journal of Hazardous Materials. 182: 317-324. [DOI:10.1016/j.jhazmat.2010.06.032]
36. Washington, J.A. & Sutter, V.L. 1980. Dilution susceptibility test: agar and macro-broth dilution procedures. In: Lennette, E.H., Balows, A., Hausler, J.R and WJTruant, J. editors. Manual of clinical microbiology, 3rd ed. Washington, DC: American Society for Microbiology, pp 453-458.
37. White, T.J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols, a guide to methods and applications, 315-322. [DOI:10.1016/B978-0-12-372180-8.50042-1]
38. Yamada, Y., Makimura, K., Mirhendi, H., Ueda, K., Nishiyama, Y., Yamaguchi, H. and Osumi, M. 2002. Comparison of different methods for extraction of mitochondrial DNA from human pathogenic yeasts. Japanese Journal of Infectious Diseases. 55: 122-125.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb