Volume 10, Issue 4 (12-2023)                   nbr 2023, 10(4): 86-99 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi F. The effect of simulated space vacuum conditions on some biochemical and physiological responses of quinoa . nbr 2023; 10 (4) : 6
URL: http://nbr.khu.ac.ir/article-1-3657-en.html
Aerospace Research Institute , moosavi@ari.ac.ir
Abstract:   (1400 Views)
Quinoa seed (Chenopodium quinoa) is considered a unique food source due to its rich protein content and high antioxidant activity related to polyphenols. In the present study, with the aim of selecting the quinoa seeds to send to space, the response of protein content, phenol, flavonoid, antioxidant capacity, and the germination index of its seeds to simulated vacuum conditions of space was evaluated. The results showed a significant increase in the seed germination index for the vacuum-treated group compared to the control group. Total phenolic and flavonoid content was higher in vacuum-treated seeds compared to the control group. Vacuum conditions significantly increased the antioxidant capacity of quinoa seeds. The total seed protein content in the vacuum-treated and control groups was 25 and 35 mg/ml, respectively. The seed protein profile showed 13 distinct protein bands in the molecular weight range of 15 to 70 kilodaltons. The intensity of protein bands was significantly different between vacuum treatment and control groups. Structural changes in the seed pericarp as well as water and oil exit from the seeds under vacuum conditions can be the causes of different biochemical and physiological responses of quinoa seeds in the present study.
 
Article number: 6
Full-Text [PDF 412 kb]   (644 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2023/11/27 | Revised: 2024/07/14 | Accepted: 2024/01/8 | Published: 2024/03/13 | ePublished: 2024/03/13

References
1. Abdellaoui, R., Souid, A., Zayoud, D., & Neffati, M. (2013). Effects of natural long storage duration on seed germination characteristics of Periploca angustifolia Labill. African Journal of Biotechnology, 12(15). [DOI:10.5897/AJB10.1862]
2. Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food chemistry, 183, 83-90. [DOI:10.1016/j.foodchem.2015.03.029]
3. Ando, H., Chen, Y.-c., Tang, H., Shimizu, M., Watanabe, K., & Mitsunaga, T. (2002). Food components in fractions of quinoa seed. Food Science and Technology Research, 8(1), 80-84. [DOI:10.3136/fstr.8.80]
4. Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C.-M. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27(4), 1326. [DOI:10.3390/molecules27041326]
5. Bazile, D., Pulvento, C., Verniau, A., Al-Nusairi, M. S., Ba, D., Breidy, J., . . . Otambekova, M. (2016). Worldwide evaluations of quinoa: preliminary results from post international year of quinoa FAO projects in nine countries. Frontiers in plant science, 7, 850. [DOI:10.3389/fpls.2016.00850]
6. Boughalleb, F., Mahmoudi, M., Abdellaoui, R., Yahia, B., Zaidi, S., & Nasri, N. (2020). Effect of long‐term storage on phenolic composition, antioxidant capacity, and protein profiles of Calicotome villosa subsp. intermedia seeds. Journal of food biochemistry, 44(1), e13093. [DOI:10.1111/jfbc.13093]
7. Bradford, M. (1976). A rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principle of protein dye intetaction. Anal biochem, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
8. Brinegar, C., & Goundan, S. (1993). Isolation and characterization of chenopodin, the 11S seed storage protein of quinoa (Chenopodium quinoa). Journal of agricultural and food chemistry, 41(2), 182-185. [DOI:10.1021/jf00026a006]
9. Carillo, P., Morrone, B., Fusco, G. M., De Pascale, S., & Rouphael, Y. (2020). Challenges for a sustainable food production system on board of the international space station: A technical review. Agronomy, 10(5), 687. [DOI:10.3390/agronomy10050687]
10. Coello, P., & Vázquez-Ramos, J. M. (1996). Maize DNA polymerase 2 (an α-type enzyme) suffers major damage after seed deterioration. Seed Science Research, 6(1), 1-7. [DOI:10.1017/S0960258500002932]
11. Da Silva, L. F., Öchsner, A., & Adams, R. D. (2011). Handbook of adhesion technology: Springer Science & Business Media. [DOI:10.1007/978-3-642-01169-6]
12. Dekoulis, G. (2018). Space Flight: BoD-Books on Demand. [DOI:10.5772/intechopen.69789]
13. Dini, I., Tenore, G. C., & Dini, A. (2005). Nutritional and antinutritional composition of Kancolla seeds: an interesting and underexploited andine food plant. Food chemistry, 92(1), 125-132. [DOI:10.1016/j.foodchem.2004.07.008]
14. Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food chemistry, 97(4), 654-660. [DOI:10.1016/j.foodchem.2005.04.028]
15. El-Hakim, A., Ahmed, F., Mady, E., Abou Tahoun, A. M., Ghaly, M. S., & Eissa, M. A. (2022). Seed quality and protein classification of some quinoa varieties. Journal of Ecological Engineering, 23(1). [DOI:10.12911/22998993/143866]
16. Elsohaimy, S., Refaay, T., & Zaytoun, M. (2015). Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2), 297-305. [DOI:10.1016/j.aoas.2015.10.007]
17. Fairbanks, D., Burgener, K., Robison, L., Andersen, W., & Ballon, E. (1990). Electrophoretic characterization of quinoa seed proteins. Plant Breeding, 104(3), 190-195. [DOI:10.1111/j.1439-0523.1990.tb00422.x]
18. Halloy, S., & González, J. (1993). An inverse relation between frost survival and atmospheric pressure. Arctic and Alpine Research, 25(2), 117-123. [DOI:10.2307/1551547]
19. Harvey, B., Zakutnyaya, O., Harvey, B., & Zakutnyaya, O. (2011). Orbiting space stations. Russian Space Probes: Scientific Discoveries and Future Missions, 301-374. [DOI:10.1007/978-1-4419-8150-9_6]
20. Hirose, Y., Fujita, T., Ishii, T., & Ueno, N. (2010). Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food chemistry, 119(4), 1300-1306. [DOI:10.1016/j.foodchem.2009.09.008]
21. James, L. E. A. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Advances in food and nutrition research, 58, 1-31. [DOI:10.1016/S1043-4526(09)58001-1]
22. Jancurová, M., Minarovičová, L., & Dandár, A. (2009). Quinoa-a rewiev. Czech Journal of Food Sciences, 27(2), 71-79. [DOI:10.17221/32/2008-CJFS]
23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature, 227(5259), 680-685. [DOI:10.1038/227680a0]
24. Liu, S., Zhou, R., Tian, S., & Gai, J. (2007). A study on subunit groups of soybean protein extracts under SDS-PAGE. Journal of the American Oil Chemists' Society, 84, 793-801. [DOI:10.1007/s11746-007-1111-z]
25. Mousavi, F. (2019). Effects of Simulated Microgravity on Pollen Germination and Growth of Lily. Technology in Aerospace Engineering, 3(2), 53-58.
26. Mousavi, F. (2023). Plant germplasm and extreme conditions of outer space. Space Science and Technology.
27. Musgrave, M. E., Gerth, W. A., Scheld, H. W., & Strain, B. R. (1988). Growth and mitochondrial respiration of mungbeans (Phaseolus aureus Roxb.) germinated at low pressure. Plant physiology, 86(1), 19-22. [DOI:10.1104/pp.86.1.19]
28. Paul, A.-L., & Ferl, R. J. (2006). The biology of low atmospheric pressure-implications for exploration mission design and advanced life support. Gravitational and Space Biology, 19(2), 3-18.
29. Ponessa, G., Such, P., González, J., Mercado, M., Buedo, S., González, D., . . . Daly, M. (2022). Tolerance of high mountain quinoa to simulated extraplanetary conditions. Changes in surface mineral concentration, seed viability and early growth. Acta Astronautica, 195, 502-512. [DOI:10.1016/j.actaastro.2022.03.039]
30. Prado, F. E., Boero, C., Gallardo, M. R. A., & González, J. A. (2000). Effect of NaCl on growth germination and soluble sugars content in Chenopodium quinoa Willd. seeds.
31. Pukacka, S., & Ratajczak, E. (2007). Age-related biochemical changes during storage of beech (Fagus sylvatica L.) seeds. Seed Science Research, 17(1), 45-53. [DOI:10.1017/S0960258507629432]
32. Repo-Carrasco-Valencia, R. A.-M., & Serna, L. A. (2011). Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Food Science and Technology, 31, 225-230. [DOI:10.1590/S0101-20612011000100035]
33. Romero, S., & Shahriari, S. (2011). Quinoa's global success creates quandary at home. The New York Times, 19.
34. Sammour, R. H. (1989). Effect of ageing on the major reserve molecules and their related enzyme in natural aged seeds of flax. Journal of Islamic Academy of Sciences, 2(4), 247-251.
35. Schwartzkopf, S. H., & Mancinelli, R. L. (1991). Germination and growth of wheat in simulated Martian atmospheres. Acta Astronautica, 25(4), 245-247. [DOI:10.1016/0094-5765(91)90078-J]
36. Sigstad, E. E., & Prado, F. E. (1999). A microcalorimetric study of Chenopodium quinoa Willd. seed germination. Thermochimica acta, 326(1-2), 159-164. [DOI:10.1016/S0040-6031(98)00599-1]
37. Sin, M. H. (2017). Total phenolic content and anti-oxidant potential of Ficus deltoidea using green and non-green solvents. Journal of Pharmaceutical Negative Results, 8(1), 15-19. [DOI:10.4103/0976-9234.204913]
38. Tang, Y., Gao, F., Guo, S., & Li, F. (2014). Effects of hypobaria and hypoxia on seed germination of six plant species. Life Sciences in Space Research, 3, 24-31. [DOI:10.1016/j.lssr.2014.08.001]
39. Tang, Y., Li, X., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., . . . Tsao, R. (2015). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food chemistry, 174, 502-508. [DOI:10.1016/j.foodchem.2014.11.040]
40. Tang, Y., Zhang, B., Li, X., Chen, P. X., Zhang, H., Liu, R., & Tsao, R. (2016). Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects. Journal of agricultural and food chemistry, 64(8), 1712-1719. [DOI:10.1021/acs.jafc.5b05761]
41. Toapanta, A., Carpio, C., Vilcacundo, R., & Carrillo, W. (2016). Analysis of protein isolate from quinoa (Chenopodium quinoa Willd). Asian J. Pharm. Clin. Res, 9(2), 332-334.
42. Vega‐Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90(15), 2541-2547. [DOI:10.1002/jsfa.4158]
43. Vilcacundo, R., Barrio, D., Carpio, C., García-Ruiz, A., Rúales, J., Hernández-Ledesma, B., & Carrillo, W. (2017). Digestibility of quinoa (Chenopodium quinoa Willd.) protein concentrate and its potential to inhibit lipid peroxidation in the Zebrafish larvae model. Plant Foods for Human Nutrition, 72, 294-300. [DOI:10.1007/s11130-017-0626-1]
44. Vishwanath, K., Prasanna, K., Gowda, R., Prasad, S. R., Narayanaswammy, S., & Pallavi, H. (2007). Influence of accelerated ageing on total soluble seed protein profiles of tomato. SEED RESEARCH-NEW DELHI-, 35(2), 194.
45. Visscher, A. M., Seal, C. E., Newton, R. J., Frances, A. L., & Pritchard, H. W. (2016). Dry seeds and environmental extremes: consequences for seed lifespan and germination. Functional Plant Biology, 43(7), 656-668. [DOI:10.1071/FP15275]
46. Wang, X., Zhao, R., & Yuan, W. (2020). Composition and secondary structure of proteins isolated from six different quinoa varieties from China. Journal of Cereal Science, 95, 103036. [DOI:10.1016/j.jcs.2020.103036]
47. Wołosiak, R., Drużyńska, B., Piecyk, M., Majewska, E., & Worobiej, E. (2018). Effect of sterilization process and storage on the antioxidative properties of runner bean. Molecules, 23(6), 1409. [DOI:10.3390/molecules23061409]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb