Volume 7, Issue 1 (4-2020)                   nbr 2020, 7(1): 30-36 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahrami A, Jenabzadeh B, Mosmeri H, Ghafari M D. Phenazine 1- carboxylic acid (PCA) produced by Pseudomonas aeroginosa MUT.3: a study on its stability and antibacterial activity under various environmental conditions . nbr 2020; 7 (1) :30-36
URL: http://nbr.khu.ac.ir/article-1-2883-en.html
Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran , a_bahrami@mut.ac.ir
Abstract:   (5105 Views)

Phenazine 1-corboxylic acid (PCA) is an antibiotic, which inhibits the growth of a vast number of micro-organisms. PCA has has been applied in fields such as pharmaceutical, agricultural, marine and chemical industries. In this study, the antibiotic properties of PCA (produced by pseudomonas aeruginosa MUT.3, which is kept at the Microbial Collection of Malek Ashtar University of Technology) was studied. The impacts of temperature and light conditions on the activity of PCA was investigated within a 230-day period. To investigate the rate of PCA destruction in the experiment, high performance liquid chromatography (HPLC) was utilized. Moreover, the antibacterial activity of PCA under various conditions was studied by minimum inhibitory (MIC) and minimum biocidal concentration (MBC) methods against E. coli DH5α. The results showed that PCA could be active up to 210 days in darkness (at 25oC). Meanwhile, the antibacterial activity of PCA was reduced to 100 and 50 days by increasing the temperature to 35 and 45oC, respectively. In addition, PCA could be active up to 120 and 10 days in visible and ultraviolet light condition, respectively. The MIC and MBC data were consistent with the HPLC results. Detailed data on the activity and stability of phenazine 1-corboxylic acid under various environmental conditions, as presented in this study, could be helpful in industries and healthcare services.
 
 

Full-Text [PDF 1002 kb]   (1151 Downloads)    
Type of Study: Original Article | Subject: Microbiology
Received: 2017/06/14 | Revised: 2020/05/9 | Accepted: 2019/04/22 | Published: 2020/03/31 | ePublished: 2020/03/31

References
1. Bakker, P.A., Glandorf, D.C., Viebahn, M., Ouwens, T. W., Smit, E., Leeflang, P. & van Loon, L.C. 2002. Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2, 4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie Van Leeuwenhoek 81: 617-624. [DOI:10.1023/A:1020526126283]
2. Chin-A-Woeng T.F.C., Thomas-Oates, J.E., Lugtenberg, B.J.J., & Bloemberg, G.V. 2001. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol. Plant Microb. Interact. 14: 1006-1015. [DOI:10.1094/MPMI.2001.14.8.1006]
3. De Vleesschauwer, D., Djavaheri, M., Bakker, P.A. & Höfte, M. 2008. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 148: 1996-2012. [DOI:10.1104/pp.108.127878]
4. Gao, B., Dong, S., Liu, J., Liu, L., Feng, Q., Tan, N. & Wang, L. 2016. Identification of intermediates and transformation pathways derived from photocatalytic degradation of five antibiotics on ZnIn 2 S 4. Chem. Eng. J. 304: 826-840. [DOI:10.1016/j.cej.2016.07.029]
5. Ghauch, A., Baalbaki, A., Amasha, M., El Asmar, R., & Tantawi, O. 2017. Contribution of persulfate in UV-254nm activated systems for complete degradation of chloramphenicol antibiotic in water. Chem. Eng. J. 317: 1012-1025. [DOI:10.1016/j.cej.2017.02.133]
6. Guzmán-Trampe, S., Ceapa, C.D., Manzo-Ruiz, M. & Sánchez, S. 2017. Synthetic biology era: improving antibiotićs world. Biochem. Pharma. 134: 99-113. [DOI:10.1016/j.bcp.2017.01.015]
7. Hu, H.B., Xu, Y.Q., Chen, F., Zhang, X.H. & HUR, B. K. 2005. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1-carboxylic acid and pyoluteorin. J. Microb. Biotech. 15: 86-90.
8. Karampatakis, V., Papanikolaou, T., Giannousis, M., Goulas, A., Mandraveli, K., Kilmpasani, M. & Mirtsou‐Fidani, V. 2009. Stability and antibacterial potency of ceftazidime and vancomycin eyedrops reconstituted in BSS® against Pseudomonas aeruginosa and Staphylococcus aureus. Acta Ophthalmologica 87: 555-558. [DOI:10.1111/j.1755-3768.2008.01306.x]
9. Li, D. & Shi, W. 2016. Recent developments in visible-light photocatalytic degradation of antibiotics. Chinese J. Catal. 37: 792-799. [DOI:10.1016/S1872-2067(15)61054-3]
10. Lima, M.J., Silva, C.G., Silva, A.M., Lopes, J.C., Dias, M.M. & Faria, J.L. 2017. Homogeneous and heterogeneous photo-Fenton degradation of antibiotics using an innovative static mixer photoreactor. Chem. Eng. J. 310: 342-351. [DOI:10.1016/j.cej.2016.04.032]
11. Lofrano, G., Libralato, G., Adinolfi, R., Siciliano, A., Iannece, P., Guida, M. & Carotenuto, M. 2016. Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects. Ecotox. Environ. Safety 123: 65-71. [DOI:10.1016/j.ecoenv.2015.07.039]
12. Maddula V.S.R.K., Pierson, E.A., Pierson I. L.S. 2008. Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J. Bacteriol. 190: 2759-2766. [DOI:10.1128/JB.01587-07]
13. Mavrodi, D.V., Blankenfeldt, W. & Thomashow, L.S. 2006. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. - Annu. Rev. Phytopathol. 44: 417-445. [DOI:10.1146/annurev.phyto.44.013106.145710]
14. Mavrodi, D.V., Mavrodi, O.V., Parejko, J.A., Bonsall, R.F., Kwak, Y.S., Paulitz, T.C. & Weller, D.M. 2011. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. App. Environ. Microb. 78: 804-812. [DOI:10.1128/AEM.06784-11]
15. Mazzola, M., Cook, R.J., Thomashow, L.S., Weller, D.M. & Pierson, L.S. 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol. 58: 2616-2624. [DOI:10.1128/AEM.58.8.2616-2624.1992]
16. Mosmeri, H., Bahrami, A., Ghafari, M.D. & Jazayeri K. 2015. Optimization of phenazine 1-carboxilic acid extraction by Pseudomonas aeruginosa MUT.3. J. Sep. Sci. Eng. 7: 65-74.
17. No, H.K., Kim, S.H., Lee, S.H., Park, N.Y. & Prinyawiwatkul, W. 2006. Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohyd. Poly. 65: 174-178. [DOI:10.1016/j.carbpol.2005.12.036]
18. Nikzad A., Salehi, S.Y, Bahrami, A. & Arabian, D. 2015. Comparison of fermentation time effect on phenazine 1- carboxylic acid (PCA) anti-corrosion antibacterial activity extracted from Pseudomonas aeruginosa MUT.3 strain against steel corrosive bacteria, New Cell. Molecul. Biotech. J. 5: 27-34.
19. Pierson, L.S. & Pierson, E.A. 2006. Phenazine antibiotic production by the biological control bacterium Pseudomonas aureofaciens: role in ecology and disease suppression. FEMS Microbol. Lett. 136: 101-108. [DOI:10.1111/j.1574-6968.1996.tb08034.x]
20. Selin, C., Habibian, R., Poritsanos, N., Athukorala, S.N.P., Fernando, D. & Teresa, R. 2010. Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum but do play a role in biofilm formation. FEMS Microbiol Ecol. 71: 73-83. [DOI:10.1111/j.1574-6941.2009.00792.x]
21. Su, J., Zhou, Q. & Zhang, H. 2010. Medium optimization for phenazine-1-carboxylic acid production by a gacA qscR double mutant of Pseudomonas sp. M18 using response surface methodology. Biores. Tec. 101: 4089- 4095. [DOI:10.1016/j.biortech.2009.12.143]
22. Tan, Z., Luo, J., Liu, F., Zhang, Q. & Jia, S. 2015. Effects of pH, temperature, storage time, and protective agents on Nisin antibacterial stability. In Advances in Applied Biotechnology. Springer Berlin Heidelberg, pp: 305-312. [DOI:10.1007/978-3-662-46318-5_33]
23. Traub, W.H. & Leonhard, B. 1995. Heat stability of the antimicrobial activity of sixty-two antibacterial agents. J. Antimicrob. Chemoth. 35: 149-154. [DOI:10.1093/jac/35.1.149]
24. Upadhyay, A. & Srivastava, S. 2011. Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiol. Res. 166: 323-335. [DOI:10.1016/j.micres.2010.06.001]
25. Wu, S., Hu, H., Lin, Y., Zhang, J. and Hu, Y.H. 2020. Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J. 382: 122-142. [DOI:10.1016/j.cej.2019.122842]
26. Yan, M., Hua, Y., Zhu, F., Gu, W., Jiang, J., Shen, H. & Shi, W. 2017. Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb 2 O 6 pn junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics. App. Catal. B: Environ. 202: 518-527. [DOI:10.1016/j.apcatb.2016.09.039]
27. Yuan, L., Li, Y. & Wang Y. 2008. Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q. Biosci. Bioeng. 105: 232- 237. [DOI:10.1263/jbb.105.232]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb