Volume 7, Issue 1 (4-2020)                   nbr 2020, 7(1): 64-75 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pas M, Shahbazi H, Ebrahimi L. The biocontrol potential of Pseudomonas fluorescens against Macrophomina phaseolina and estimating the total phenol compounds of bean roots. nbr 2020; 7 (1) :64-75
URL: http://nbr.khu.ac.ir/article-1-3242-en.html
Department of Plant Protection, Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran , ha.shahbazi@areeo.ac.ir
Abstract:   (4060 Views)
Charcoal rot caused by Macrophomina phaseolina is one of the most important soil borne diseases with a broad host range including bean, which annually brings a significant damage to this plant. Biological control of charcoal rot is very important because its chemical control harms the environment, microflora and soil fertility. Chemical control of charcoal rot is also difficult and sometimes ineffective. Fluorescent Pseudomonads are able to increase plant growth and inhibit the development of plant pathogens by producing and secreting antibiotics, enzymes, siderophores, and plant hormones. In this study, infected bean plants by M. phaseolina were collected from infected bean fields of Khorramabad (Lorestan Province, Iran) in the summer of 2015. Virulence of fungal isolates was evaluated in a greenhouse and one isolate with the highest pathogenicity was chosen for further experiments. The biocontrol potential of eight Pseudomonas fluorescens strains, whose biocontrol abilities were proved in previous studies, was examined against M. phaseolina in vitro. The growth inhibition of M. phaseolina was examined by dual culture test and the antifungal activity of bacterial volatile and nonvolatile metabolites. P. fluorescens UTPf125, which showed the highest inhibitory effect on the mycelial growth, was selected for greenhouse tests. UTPf125 strain led to a significant reduction (%50) of disease severity and increased fresh and dry weight significantly. Phenol compounds were evaluated 1, 3, 5, 7 and 9 days after inoculation by pathogen. The results showed that the highest value of total phenol content was obtained on the third and fifth days after inoculation, decreasing on the seventh and ninth days.
 
 
Full-Text [PDF 4843 kb]   (1832 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2019/01/29 | Revised: 2020/05/9 | Accepted: 2019/05/6 | Published: 2020/03/31 | ePublished: 2020/03/31

References
1. Ahmadzadeh, M. & Ghasemi, S. 2012. Introduction of Pseudomonas fluorescens as a new biocontrol agent in Iran. BCPPD 1: 49-60.
2. Ammarlou, A., Rouhani, M. & Mehdikhani-Moghaddam, A. 2010. Identification and investigation of pathogenicity of fungi causing root rot of wheat in North Khorasan province. JPP 24: 269-284.
3. Behrouzin, M. 1997. Effect of Puccinia striformis on some physiological, biochemical and histological phenomena of two wheat cultivars. Ph.D. dissertation in Plant Pathology. Tarbiat Modarres University. Tehran. 199 p.
4. Bhatia, I., Uppal, D. & Bajaj, K. 1972. Study of phenolic contents of resistant and susceptible varieties of tomato (Lycopersicum esculentum) in relation to early blight disease. Indian Phytopath. 25: 231-235.
5. Brisbane, P.G., Janik, L.J., Tate, M. & Warren, R. 1987. Revised structure for the phenazine antibiotic from Pseudomonas fluorescens 2-79 (NRRL B-15132). Antimicrob. Agents Chemother. 31: 1967-1971. [DOI:10.1128/AAC.31.12.1967]
6. Madloo, P. B., Behboudi, K., Tohidfar, M., Jouzani, G. S. & Ahmadzadeh, M. 2013. Response of some important Iranian wheat cultivars to Fusarium culmorum under genetic diversity of indigenous bio-control agent fluorescent Pseudomonas spp. Austral. J. Crop Sci. 7: 1003-1009.
7. Chancey, S.T., Wood, D.W., Pierson, E.A. & Pierson, L.S. 2002. Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. Appl. Environ. Microbiol. 68: 3308-3314. [DOI:10.1128/AEM.68.7.3308-3314.2002]
8. Chehri, k., Abbasi, S., Reddy, K. & Salleh, B. 2010. Occurrence and pathogenicity of various pathogenic fungi on cucurbits from Kermanshah province, Iran. African J. Microbiol. Res. 4: 1215-1223.
9. Chin-A-Woeng TF, de Priester W, van der Bij AJ, & Lugtenberg, BJ. 1997. Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. MPMI 10: 79-86. [DOI:10.1094/MPMI.1997.10.1.79]
10. Dadgar, M. 2009. Flourishing in Lorestan agriculture. Jihad-e-Agriculture Organization of Lorestan Province Press, 174 pp.
11. Dennis, C. & Webster, J. 1971. Antagonistic properties of specific groups of Trichoderma: production of non-volatile antibiotics. Trans. Br. Mycol. Soc. 57: 25-39. [DOI:10.1016/S0007-1536(71)80077-3]
12. Dhingra, O.D. & Sinclair, J.B. 1973. Location of Macrophomina phaseoli on soybean plants related to culture characteristics and virulence. Phytopathol. 63: 934-936. [DOI:10.1094/Phyto-63-934]
13. Dhingra, O.D., & Sinclair, J. B. 1995. Basic plant pathology methods. Boca Raton: Lewis publishers, 434 pp.
14. Eraghi, M.M. & Rahnama, K. 2010. Evaluation of Bacillus subtilis isolates in biological control of sunflower root rot caused by Macrophomina phaseolina (Tassi) Goid. JPP 34: 1-11.
15. Ershad, D. & Shirazi, G.H. 2004. Melon charcoal disease. JPP 5: 1-7.
16. Etebarian, H.R., Kheiri, A., Roustaei, A., Khodakaramian, G.H. & Aminian, H. 2007. Evaluation of Pseudomonas isolates for biological control of charcoal stem rot of melon caused by Macrophomina phaseolina. Acta Hort. 761: 157-162. [DOI:10.17660/ActaHortic.2007.761.20]
17. Etebarian, H.R., Sholberg, P.L., Eastwell, K.C. & Sayler, R.J. 2005. Biological control of apple blue mold with Pseudomonas fluorescens. Can. J. Microbiol. 51: 591-598. [DOI:10.1139/w05-039]
18. Expert, J. & Digat, B. 1995. Biocontrol of Sclerotinia wilt of sunflower by Pseudomonas fluorescens and Pseudomonas putida strains. Can. J. Microbiol. 41: 685-691. [DOI:10.1139/m95-094]
19. Fiddaman, P. & Rossall, S. 1993. The production of antifungal volatiles by Bacillus subtilis. J. Appl. Bacteriol. 74: 119-126. [DOI:10.1111/j.1365-2672.1993.tb03004.x]
20. Gill, S. S. & Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiol. and biochem. 48: 909-930 [DOI:10.1016/j.plaphy.2010.08.016]
21. Golpaygani, S., Zafari, D. & Khodakaramian, G. 2011. Biological control of important factors of root rot of bean by extra-root antagonist bacteria. Iranian J. Plant. Prot. Sci. 41: 283-292.
22. Howell, С. & Stipanovic, R. 1980. Suppression of Pythium ultimium induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathol. 70: 712-715. [DOI:10.1094/Phyto-70-712]
23. Jain, A.K. & Yadav, H.S. 2003. Biochemical constituents of finger millet genotype associated with resistant to blast caused by Pyricularia grisea. Annu. Plant Protect. Sci. 11: 70-74.
24. Jimenez-Diaz, R.M., Blanco-López, M.A. & Sackston, W.E. 1983. Incidence and distribution of charcoal rot of sunflower caused by Macrophomina phaseolina in Spain. Plant Dis. 67: 1033-1036. [DOI:10.1094/PD-67-1033]
25. Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. & Dfago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. MPMI 5: 413.
26. Keel, C. & Defago, G. 1997. Interaction between Beneficial Soil Bacteria and Root pathogen: Mechanism and Ecological impact. Black well scientific publishers, London, pp: 27-46.
27. Kliebenstein, D.J. 2004. Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 27: 675-684. [DOI:10.1111/j.1365-3040.2004.01180.x]
28. Kraus, J. & Loper, J. 1992. Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping off of cucumber. Phytopathol. 82: 264-271. [DOI:10.1094/Phyto-82-264]
29. Kulbat, K. 2016. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 80: 97-108.
30. Laville, J., Blumer, C., Von Schroetter, C., Gaia, V., Défago, G., Keel, C. & Haas, D. 1998. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J. Bacteriol. 180: 3187-3196. [DOI:10.1128/JB.180.12.3187-3196.1998]
31. Leong, J. 1986. Sidrophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. phtopathol. 24: 187-209. [DOI:10.1146/annurev.py.24.090186.001155]
32. Majnoun Hosseini, N. 2008. Agronomy and beans production. University of Tehran Press, 294 pp.
33. Matern, U. & Kneusel, R. 1988. Phenolic compounds in plant disease resistance. Phytoparasitica 16: 153-170. [DOI:10.1007/BF02980469]
34. Mazzola, M., Cook, R.J., Thomashow, L.S., Weller, D. & Pierson, L. 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol. 58: 2616-2624. [DOI:10.1128/AEM.58.8.2616-2624.1992]
35. Meena, B., Marimuthu, T., Vidhyasekaran, P. & Velazhahan, R. 2001. Biological control of root rot of groundnut with antagonistic Pseudomonas fluorescens strains. J. Plant. Dis. Prot. 108: 369-381.
36. Michalak, A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 15: 523-530.
37. Ministry of Agriculture Statistics. 2017. Agricultural Statistics Crop Season 1391-92. In Economic and planning department. Center for Information and Communication Technology. Ministry of Agriculture Jihad Press, 154 pp.
38. Obethasli, T., Defago, G. & Haas, D. 1991. Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHAO of Pseudomonas fluorescences: role of tryptophan side chain oxidase. J. Gen. Microbiol. 137: 2273-2279. [DOI:10.1099/00221287-137-10-2273]
39. Pahlavani, M.H., Razavi, S.E., Mirizadeh, I. & Vakili, S. 2006. Field screening of safflower genotypes for resistance to charcoal rot disease. Int. J. Plant Prod. 1: 45-52.
40. Parashar, A. & Lodha, P. 2007. Phenolics estimation in Foeniculum vulgare infected with Ramularia blight. Annu. Plant Protect. Sci. 15: 396-398.
41. Purkayastha, S., Kaur, B., Dilbaghi, N. & Chaudthury, A. 2006. Characterization of Macrophomina phaseolina, the charcoal rot of cluster bean, using conventional techniques and PCR based molecular markers. Plant Pathol. 55: 106-116. [DOI:10.1111/j.1365-3059.2005.01317.x]
42. Rengel, Z., Pedler, J.F. & Graham, R.D. 1994. Control of Mn status in plants and rhizosphere: genetic aspects of host and pathogen effects in the wheat take-all interaction. In Manthey, J.A., Crowley, D.E. & Luster, D.G. (eds.), Biochemistry of Metal Micronutrients in the Rhizosphere. 125-145. CRC Press, Boca Raton, FL, USA.
43. Savchuk S, Fernando WGD, Parks PS. 2001. Potential for biocontrol of Sclerotinia sclerotiorum on canola. Can. J. Plant Pathol. 23: 205.
44. Schippers, B., Bkker, A.W. & Bakker, P. 1987. Interaction of deleterious and beneficial rhizospher microorganism and the effect of cropping practices. Annu. Rev. Phytopathol. 25: 339-358. [DOI:10.1146/annurev.py.25.090187.002011]
45. Seevers, P.M. and Daly, J.M. 1970. Studies on wheat stem rust resistance controlled at the sr 6 locus 1- the role of phenolic compounds. Phytopathol. 60: 1322-1328. [DOI:10.1094/Phyto-60-1322]
46. Shahbazi, H., Aminian, H., Sahebani, N. & Halterman, D.A. 2010. Biochemical evaluation of resistance responses of potato to different isolates of Alternaria solani. Phytopathol. 100: 454-459. [DOI:10.1094/PHYTO-100-5-0454]
47. Shahbazi, H., Behboudi, K, Javan Nikkhah, M. & Ahmadzadeh, M. 2016. Detection of hcnAB and phlD genes in fluorescent pseudomonads biological control agent of Fusarium graminearum and studying their ability to ectorhizosphere colonization of wheat. Biol. Control Pests Plant Dis. 4: 143-155.
48. Shanahan, P., O'Sullivan, D.J., Simpson, P., Glennon, J.D. & O'Gara, F. 1992. Isolation of 2,4 diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353-358. [DOI:10.1128/AEM.58.1.353-358.1992]
49. Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Botany 217037: 1-26. [DOI:10.1155/2012/217037]
50. Siddiqui, Z. A. & Mahmood, I. 1993. Biological control of Meloidogyne incognita race 3 and Macrophomina phaseolina by Paecilomyces lilacinus and Bacillus subtilis alone and in combination in chickpea. Fund. Appl. Nematol. 16: 215-218.
51. Smith, G.S. & Wyllie, T.D. 1999. Charcoal Rot. In Hartman, G.L., Sinclair, J.B. & Rupe, J.C. (eds.), Compendium of soybean disease. 29-31. APS Press, American Phytopathological Society.
52. Steiner, U. & Schönbeck, F. 1995. Induced resistance to disease in plants. In Hammerschmialt, R. & Riyc, J. (eds.), Development in plant pathology. 86-110. Kluwer Academic Publishers. [DOI:10.1007/978-94-015-8420-3_4]
53. Thomashow, L.S. & Weller, D.M. 1991. Role of antibiotics and sidrophores in biocontrol of take-all disease of wheat. Springer, Dordrecht, 245-251 pp. [DOI:10.1007/978-94-011-3336-4_51]
54. Velazhahan, R., Datta, S.K. & Muthukrishnan, S. 1999. The PR-5 family: Thaumatin-like proteins. In Datta S.K., & Muthukrishnan, S. (eds.), Pathogenesis-related proteins in plants. CRC Press, pp: 107-129.
55. Vessey, K.J. 2003. Plant growth- promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-580. [DOI:10.1023/A:1026037216893]
56. Voisard, C.H., Keel, C.H., Haas, D. & Defago, G. 1989. Cyanide production by Pseudomonas fluorescence helps suppress black root rot of tobacco under gootobiotic condition. EMBO J. 351-358. [DOI:10.1002/j.1460-2075.1989.tb03384.x]
57. Weller, D. 1988. Biological control of soilborne plant pathogens in the rhizospher with bacteria. Annu. Rev. phytopathol. 26: 379-407. [DOI:10.1146/annurev.py.26.090188.002115]
58. Yamamoto, H., Hokin, H., Tani, T. & Kadota, G. 1977. Phenylalanine ammonia‐lyase in relation to the crown rust resistance of oat leaves. J. Phytopathol. 90: 203-211. [DOI:10.1111/j.1439-0434.1977.tb03238.x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb