Shahid Beheshti University , mahmoodlt@yahoo.com
Abstract: (373 Views)
Ferroptosis, as a type of newly recognized iron-dependent programmed cell death, is closely related to aging. The aim of this study is to investigate the role of ferroptosis in the aging of mesenchymal stem cells (MSCs). GSE97311 dataset (containing expression data of fetal and adult MSCs) was analyzed and differentially expressed genes (DEGs) were extracted. Then, among them, ferroptosis-related differentially expressed genes (FRDEGs) were determined. In the next step, biological functions, protein-protein interactions, hub genes, upstream regulators, and inflammatory factors related to FRDEGs were analyzed using different bioinformatics methods. According to the analysis, 34 genes were identified as FRDEGs. Analysis of biological functions showed that these genes are mostly involved in oxidoreductase activities, fatty acid synthesis and response to iron ion. Also, the analyzes related to the signaling pathways also showed that these genes are mostly involved in the pathways related to types of cancers as well as fatty acid biosynthesis. According to the analysis, miR-26b-5p was identified as the most important miRNA and LINC00205 and GAS5 as the most important lncRNAs. Hub genes including HMOX1, EZH2, NEDD4L, PTGS2, CDKN2A, ATF3, NOX4, TXNIP, SNCA and MAPK3 were identified as the main genes of ferroptosis related to aging of MSCs.
Article number: 1
Type of Study:
Original Article |
Subject:
Cell and Molecular Biology Received: 2024/06/15 | Revised: 2024/12/21 | Accepted: 2024/12/1 | Published: 2024/12/17 | ePublished: 2024/12/17