Search published articles


Showing 6 results for Type of Study: Review

Azadeh Niknejad,
Volume 5, Issue 3 (12-2018)
Abstract

Molecular farming technology offers a unique advantage that almost any protein can be produced economically and safely under very controlled conditions. Besides traditional production systems, such as bacteria, yeasts, insects and mammal cell lines, plants can now be used to produce eukaryotic recombinant proteins, especially therapeutic ones. Their advantages as hosts for protein production include correct post-translational modifications, low-cost maintenance and no risk of contamination by human pathogens. The system is widely applied in agriculture and industry, especially in life science and pharmaceutical industry. The application of transgenic plants in the production of vaccines, antibodies and pharmaceutical proteins has been playing a key role in plant genetic engineering in recent years. The production of recombinant proteins plays a critical role in the production of high amounts of high-quality proteins. In this review, common problems in the production of recombinant proteins and antimicrobial peptides in plant-based expression systems are discussed and strategies for their solution are suggested. Viral vector-mediated transient gene expression in plants enables rapid production of pharmaceutical proteins such as vaccine antigens and antibodies. To conclude, plant-based systems have the potential to bring unique efficacy-enhancing features to increase the utility and effectiveness of vaccines and therapeutics.

Sarah Khavari-Nejad,
Volume 5, Issue 4 (12-2018)
Abstract

Plant peroxidase (EC: 1.11.1.7) a heme-containing protein which is widely used in plants, microorganisms and animals. This two - substrate enzyme, catalyze the hydrogen peroxide into water with   oxidation of many organic and inorganic substrates that all of them can be used to measure enzyme activity. Although it’s specific substrate is hydrogen peroxide. Calcium and at least four disulfide bonds in the protein structure lead the formation and strength of three-dimensional structure of the molecule. Plant peroxidase has several roles including, involvement in lignin biosynthesis, auxin metabolism, cell growth, cell wall cross linking and respond to environmental stress. So peroxidase, considered as a good point to pursue the cell deal with stress factors such as oxidative stress. These days according to produce the pure samples of this molecule, peroxidase also used in ligand-protein studies in pharmaceutical research. So in this brief overview, in addition to introducing plant peroxidase we have had a brief look to measure the enzyme activity, the number of isoenzymes in a cell and the ensuing conformational changes of peroxidase.


Maryam Khezri,
Volume 6, Issue 1 (5-2019)
Abstract

Bacterial communities are able to form complex and three-dimensional biofilm structures. Biofilm formation is an ancient and integral component of the prokaryotic life cycle and a key factor for survival in diverse niches. In biofilms, bacterial lifestyle changes from free-floating cells to sessile cells. Presence in biofilms gives new traits to bacteria, which distinguish them from free cells. The presence of bacteria in biofilms results in high resistance to antimicrobial treatments and oxygen deficiency. Biofilms are formed in response to different environmental signals and many genes are involved in their production. Biofilms can be problematic in fluid transfer pipelines, on medical devices, as well as implants in the patients’ bodies. However, they can be applied for useful purposes such as treating industrial and agricultural wastewater, bioremediation of heavy metals and in air pollution biofilter systems. The potential of forming biofilms in pathogenic bacteria is an advantage for their survival in unfavorable conditions, and cause a lot of problems in their removal as the bacteria show more resistant to antibiotics and chemical pesticides in biofilms compared with free living cells. The ability to form biofilms in plant-beneficial rhizobacteria used for plant disease biocontrol, plant growth promotion and the improvement of agricultural products quality is an important advantage especially in their mass production and commercializing process. Considering the importance of bacterial biofilms in human life, this paper evaluated the importance of biofilms from different aspects.
 
 
Mina Maleki, Mohammad Pooya Naghshbandi, Zahra Hajihassan,
Volume 6, Issue 4 (12-2019)
Abstract

Magentotactic bacteria are the types of bacteria capable of orientation in an external magnetic field because of the ability to produce structures called magnetosomes. Magnetosomes, nanometer-scale structures, are present in most of the magnetotactice bacteria. They are intracellular organelles composed of magnetic iron mineral crystals individually surrounded by a phospholipid layer. Because of the unique features of magnetosomes, magentotactic bacteria have become the fascinating subject of research in many research and applied fields of study, including robotics, medicine, biology, environment and geology. In this review, we have tried to introduce magentotactic bacteria, the formation of magnetosomes and their structures, in order to highlight the importance of these bacteria. Finally, some applications of these bacteria in different areas of research, e.g. targeted drug delivery, cancer treatment and removal of heavy metals from water, were described in order that a better understanding of their applications could be obtained.
Fateme Mousavi, Youcef Shahali, José Oteros, Karl-Christian Bergmann,
Volume 9, Issue 2 (9-2022)
Abstract

Pollen respiratory allergies have been increasing in prevalence over the last two decades, partly as the result of the impact of climate change. For many allergenic trees, grass and weed species, increased pollen production and prolonged pollination period result in long-term increased abundance of pollen allergens in the atmosphere; earlier shifts of airborne pollen grains and prolonged exposure to respiratory allergens with important health effects on allergic individuals. The aim of this review paper was to investigate the impact of climate change and meteorological factors on pollen season indicators with a special focus on the main allergenic taxa worldwide. Main variables influencing flowering phenology such as location, climatic and meteorological parameters were identified, discussed and substantiated by published literature. Temperature, solar radiation, humidity, rainfall, wind speed and direction were identified among the most important meteorological parameters affecting the fluctuations of annual concentrations of allergenic airborne pollen grains. Although notable variations were observed according to allergenic species and studied geographical areas, temperature appeared to be the most important climatic parameter affecting flowering phenology and pollen season indicators, especially in tree species. Rising carbon dioxide levels also result in increased plant biomass, increased flowering intensity and pollen production in several tree, grass and weed allergenic species. In the light of this review, there is a growing body of evidence supporting the effect of climate change on the flowering phenology and pollen season indicators of a substantial number of allergenic ornamental and invasive plant species.
 
Azadeh Niknejad, Alireza Shafizadeh Esfandabadi, Fatemeh Abdollahi Sarvestani,
Volume 10, Issue 1 (6-2023)
Abstract

The emergence of new viruses has always been a threat to the health of people around the world, the latest example of it is the new strains of the coronavirus (SARS-CoV-2) and the resulting acute respiratory distress syndrome (ARDS). The current situation underscores the importance of rapidly producing low-cost stable vaccines that do not require refrigeration equipment for storage and transportation. However, most vaccines are not yet available in developing countries due to import costs and storage and transportation needs. Therefore, the vaccine must be affordable for developing countries so that vaccination can be carried out on a large scale. Herbal vaccines are more cost-effective than other types of vaccines and production methods and can be produced in large quantities. In addition, herbal vaccines have other benefits that are discussed in this article. However, given that an herbal medicinal product is to be used as a vaccine in a semi-processed form (such as mashed potatoes or tomato paste), specific regulatory reviews must apply to injectable vaccines. Products should also be applied to evaluate their side effects clinically. The current review article investigates the opportunities and challenges of producing plant-based vaccines to deal with diseases like Coronavirus disease (COVID-19(.


 

Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb