Hasan Deldar, Jina Khayatzadeh, Maryam Tehranipour,
Volume 7, Issue 2 (7-2020)
Abstract
Nowadays, the entrance of nanoparticles into high seas has led to toxic effects on aquatic organisms. Copper oxide nanoparticles is among the most widely used nanoparticles. The presence of these nanoparticles in the aquatic environments cause new environmental problems, which indicate the necessity of the examination of the effects of these nanoparticles on the aquatic organisms. The alfalfa plant has antioxidantive and regenerative effects due to its rich content of proteins, vitamin C and flavonoids. In this study, 6 (5 experimental and a control) groups were designed. Koi fish larvae were fed with biomar combined with various percentages of hay (0%, 10% and 20%) and were exposed to copper oxide nanoparticles with two concentrations (0 mg and 200 mg) for 14 days. The average initial length of larvae was 30.4 ± 0.01 mm, their average initial weight was 0.31 ± 0.05 and their age was around 20 dph. The specific growth rate, weight gain, length gain, survival rate and feed conversion ratio were calculated for each group. The results showed a significant higher growth rate in the groupstreated with 10% and 20% of alfalfa, as compared with the control group. In addition, the Cu NPs-treated group with 0% alfalfa rations showed the lowest rate of growth, as compared with the control group. Groups which were exposed to copper nanoparticles while receiving alfalfa-containing rations had growth indices better than the group exposed to copper nanoparticles and fed with 0% alfalfa ration, which indicated the antioxidant properties and growth-promoting effects of alfalfa.
Najme Nikdel, Javad Baharara, Saeed Zakerbostanabad, Maryam Tehranipour,
Volume 8, Issue 1 (6-2021)
Abstract
Exosomes are secreted by different types of cells and known as biological packages. Exosomes have significant role in intercellular communications and involved in the development and progression of various diseases such as cancer. Inhibin B and anti-mullerian hormone (AMH) are markers of granulosa cell tumors (GCT) and due to the role of exosomes in the progression of cancer, in this experimental study, the effect of exosomes derived from human ovarian cancer cells on the secretion of Inhibin B and antimullerian hormone (AMH) by granulosa cells was investigated. First, A2780 human ovarian cancer cells were cultured, then the supernatant was collected to extract the exosomes by ultracentrifugation and subsequently, the extracted exosomes were checked out using dynamic light scattering (DLS) and Scanning electron microscopy (SEM). In addition, granulosa cells were isolated and cultured from the ovaries immature female Balb / C mice and treated with 25 μg/ml of exosomes derived from the ovarian cancer cell-line. Inhibin B and AMH hormones levels were then measured. The results showed the significant (P<0/05) increase of the level of inhibin B and AMH hormones in the treated cells in comparison with the control group. According to the results, exosomes increased the secretion of Inhibin B and AMH hormones and seems to be effective in the proliferation of granulosa cell tumors.