Mrs Maryamsadat Mesbahi Bidgoli, Dr Mohammad Fazilati, Dr Anosheh Rahmani, Dr Habibollah Nazem,
Volume 12, Issue 2 (9-2025)
Abstract
Objective: Ozone treatment has been recognized as an effective approach to significantly reduce mycotoxin levels, including ochratoxin A (OTA), in agricultural products. This study aimed to evaluate the safety of untreated and ozone-treated OTA-contaminated corn (OCC) through a sub-chronic toxicity assessment in rats.
Method: Male rats were randomly assigned into one control group and three experimental diet groups. The experimental groups received untreated OCC or ozone-treated OCC through oral administration for a 30-day period. Clinical signs, survival, hematological parameters, serum biochemical indices, and histopathological alterations of liver and kidney tissues were examined to evaluate potential toxicological effects.
Results: No mortality or overt clinical abnormalities were observed during the experimental period. Rats fed untreated OCC exhibited significant decreases in white blood cell (WBC) counts and marked elevations in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels. Histopathological evaluation revealed OTA-induced lesions in both liver and kidney tissues. In contrast, rats fed ozone-treated OCC showed reduced biochemical alterations and attenuated histopathological damage compared with those receiving untreated OCC.
Zahra Mahdavi, Behrooz Esmailpoor, Rasoul Azarmi,
Volume 12, Issue 3 (9-2025)
Abstract
The different treatments in this experiment were foliar spraying of salinity reducer at five levels (control, 15 and 30 mgL-1 glycine betaine without liquid fish waste fertilizer, 15 and 30 mgL-1 glycine betaine with 15% (v/v) liquid fish waste fertilizer) on stevia plants grown under salt stress conditions (0, 30, 60, 90 mM of NaCl). results showed that salinity negatively affected growth parameters, relative water content, a* and b* color and increased the activity of total phenol, hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, and total carbohydrates compared with control samples. Salinity at 90 mM decreased the relative water content by 44.7% compared to the not stress. Salinity 90 mM salinity stress increased 70.46% total carbohydrates, 66.66% in H2O2 , MDA by 66.66% , Electrolyte leakage (EL) by 67.04 and 47.21% proline content by compared to the control. On the other hand, simultaneous application of glycine betaine and fish waste bio-fertilizer mitigated the effects of salinity stress by enhancing growth parameters especially at the highest salinity level (90 mM).