Azadeh Niknejad,
Volume 5, Issue 3 (12-2018)
Abstract
Molecular farming technology offers a unique advantage that almost any protein can be produced economically and safely under very controlled conditions. Besides traditional production systems, such as bacteria, yeasts, insects and mammal cell lines, plants can now be used to produce eukaryotic recombinant proteins, especially therapeutic ones. Their advantages as hosts for protein production include correct post-translational modifications, low-cost maintenance and no risk of contamination by human pathogens. The system is widely applied in agriculture and industry, especially in life science and pharmaceutical industry. The application of transgenic plants in the production of vaccines, antibodies and pharmaceutical proteins has been playing a key role in plant genetic engineering in recent years. The production of recombinant proteins plays a critical role in the production of high amounts of high-quality proteins. In this review, common problems in the production of recombinant proteins and antimicrobial peptides in plant-based expression systems are discussed and strategies for their solution are suggested. Viral vector-mediated transient gene expression in plants enables rapid production of pharmaceutical proteins such as vaccine antigens and antibodies. To conclude, plant-based systems have the potential to bring unique efficacy-enhancing features to increase the utility and effectiveness of vaccines and therapeutics.
Azadeh Niknejad, Alireza Shafizadeh Esfandabadi, Fatemeh Abdollahi Sarvestani,
Volume 10, Issue 1 (6-2023)
Abstract
The emergence of new viruses has always been a threat to the health of people around the world, the latest example of it is the new strains of the coronavirus (SARS-CoV-2) and the resulting acute respiratory distress syndrome (ARDS). The current situation underscores the importance of rapidly producing low-cost stable vaccines that do not require refrigeration equipment for storage and transportation. However, most vaccines are not yet available in developing countries due to import costs and storage and transportation needs. Therefore, the vaccine must be affordable for developing countries so that vaccination can be carried out on a large scale. Herbal vaccines are more cost-effective than other types of vaccines and production methods and can be produced in large quantities. In addition, herbal vaccines have other benefits that are discussed in this article. However, given that an herbal medicinal product is to be used as a vaccine in a semi-processed form (such as mashed potatoes or tomato paste), specific regulatory reviews must apply to injectable vaccines. Products should also be applied to evaluate their side effects clinically. The current review article investigates the opportunities and challenges of producing plant-based vaccines to deal with diseases like Coronavirus disease (COVID-19(.